способ подземного выщелачивания металлов

Классы МПК:E21B43/28 добыча полезных ископаемых иных, чем углеводороды, растворением, например с помощью щелочного или кислотного выщелачивающего вещества
Автор(ы):, ,
Патентообладатель(и):Трубецкой Климент Николаевич,
Воробьев Александр Егорович,
Бубнов Василий Карпович
Приоритеты:
подача заявки:
1995-04-03
публикация патента:

Изобретение относится к области геотехнологии и может быть использовано при подземном выщелачивании металлов из руд. Способ выщелачивания металлов включает вскрытие рудной залежи скважинами, размещение в них обсадных колонн, фильтров, оголовков и электродов, подачу технологических растворов и электроэнергии, отличается тем, что выщелачивание металлов ведут при совпадении направления миграции растворов и электрического тока с направлением слоистости выщелачиваемых минералов. 1 ил.
Рисунок 1

Формула изобретения

Способ подземного выщелачивания металлов, включающий вскрытие рудной залежи скважинами, размещение в них обсадных колонн, фильтров, оголовков и электродов, подачу технологических растворов и электроэнергии, отличающийся тем, что выщелачивание металлов из руд ведут при совпадении направления миграции растворов и электрического тока с направлением слоистости выщелачиваемых минералов.

Описание изобретения к патенту

Предлагаемое изобретение относится к области геотехнологии и может быть использовано при подземном выщелачивании металлов из руд.

Известен способ подземного выщелачивания металлов [1] включающий вскрытия рудной залежи скважинами, подачу в них технологических растворов, выщелачивающих металлы из руд, откачку технологических продуктивных растворов.

Недостатком данного способа являются высокие экологические издержки вследствие засорения недр технологическими растворами, содержащими токсичные активные агенты (цианиды, кислоты, щелочи и др.).

Наиболее близким к предлагаемому по технической сущности и достигаемому результату является способ [2] включающий оконтуривание рудной залежи скважинами, размещение в них электродов и подачу на них постоянного или переменного электрического тока.

Недостатком данного способа является высокий расход электроэнергии на выщелачивание металлов.

Цель предлагаемого изобретения заключается в повышении эффективности процесса подземного выщелачивания металлов за счет снижения расхода электроэнергии путем оптимального выбора направления движения электронов и ионов.

Поставленная цель достигается тем, что при осуществлении предложенного способа, включающего бурение скважин, их обсадку, оборудование оголовками, размещение в них электродов, подачу технической воды и электроэнергии, электроды вокруг рудной залежи размещают наиболее рационально по отношению к силовым линиям электрического тока.

При этом необходимо учитывать широко известный в геологии и геохимии, но до сих пор не нашедший применения в технике и технологии, факт влияния на удельное сопротивление руд развития в них микрослоистости (см. книгу Пархоменко Э. И. Электрические свойства горных пород. М. Наука, 1965, с. 164). В этом случае сопротивление выщелачиваемой горной массы будет зависеть от того, по какому направлению возбуждается электрический ток. Ясно, что сопротивление по направлению слоистости минералов будет значительно меньшим, чем поперек них. Об отношении этих параметров в реальных условиях можно судить по данным для рудной массы (цинковая обманка галенит): удельное сопротивление способ подземного выщелачивания металлов, патент № 2105876 поперек слоистости будет 3,6способ подземного выщелачивания металлов, патент № 2105876104, а вдоль слоистости 0,1 Ом. В результате того или иного выбора движения растворов и электрического тока в значительной мере зависят потери электроэнергии, а следовательно и эффективность процесса выщелачивания в целом.

На чертеже представлен вариант схемы подземного выщелачивания металлов, где цифрами обозначены: 1 рудная залежь, 2 слоистость минералов, 3, 4 - скважины с электродами; стрелками показано направление миграции растворов (вод) и электрического тока.

Способ осуществляется следующим образом.

Первоначально рудную залежь 1 вскрывают скважинами 3 и 4. Скважины обсаждают (на чертеже не показано) полиэтиленовыми трубами, затем в них размещают электроды (на чертеже не показано). Если рудная залежь не обводнена, то в скважину 3 подают воды, в некоторых случаях, для интенсификации процесса выщелачивания металлов, технологические растворы, содержащие активные агенты. Затем на электроды подают постоянный или переменный ток. Причем электроды (а соответственно и сами скважины) размещают так, чтобы направление миграции технологических растворов и электрического тока совпадало между собой и с направлением слоистости минералов, а не было поперек слоистости. В этом случае потери электроэнергии будут минимальными при максимальном извлечении металла из руд в растворы.

В результате будет происходить выщелачивание металлов из руд и миграция металлоносных растворов к откачной скважине 4, через которую их извлекают на дневную поверхность и направляют далее, например, на гидрометаллургический завод. В случае, если руды залежи 2 являются малопроницаемыми для растворов, то их предварительно взрыхляют, например, взрывами, не нарушая основную ориентацию слоистости минералов. Далее технология остается прежней.

Примером конкретного выполнения предложенного способа служит подземное выщелачивание цинка из руд.

Первоначально вскрывают рудную залежь 1 скважинами 3 и 4, с внутренним диаметром 155 мм. Скважины обсаждают полиэтиленовыми трубами, оборудуют фильтрами КДФ-120-08 и оголовками, снабжают электродами (на чертеже не показано). Бурение скважины осуществляют установкой БУ-20-2VIII. Затрубное пространство скважины заполняется гидроизоляционным материалом. Электроды (и скважины) размещают в соответствии с направлением слоистости минералов так, чтобы миграция растворов от закачной 3 к откачной 4 скважине и электрического тока совпадали с основным направлением слоистости минералов.

При подаче в скважину 3 технических вод (если залежь 1 не обводнена) или растворов щелочей (при интенсификации процесса выщелачивания) на электроды подают электрический ток с параметрами: V 4-6 B, плотность тока Jа=0,5-5 А/дм-2, создавая между электродами (и соответственно скважинами 3 и 4) разность напряжений. В результате будет обеспечено электровыщелачивание цинка из руд, его миграция в составе цинксодержащих вод к скважине 4 и извлечение через нее на поверхность. А так как при таком варианте выщелачивания сопротивление горной массы на 4 порядка ниже ее сопротивления поперек слоистости, то и потери электроэнергии будут в 4 раза ниже.

Положительный эффект предложенного технического решения заключается в повышении эффективности процесса подземного выщелачивания металлов за счет снижения расхода электроэнергии путем оптимального выбора направления движения электронов и ионов.

Предложенное изобретение может быть использовано при подземном выщелачивании металлов.

Применение изобретения позволит расширить область геотехнологии за счет ведения процесса электровыщелачивания металлов в подземных условиях.

Класс E21B43/28 добыча полезных ископаемых иных, чем углеводороды, растворением, например с помощью щелочного или кислотного выщелачивающего вещества

способ подземного выщелачивания окисленных никель-кобальтовых руд -  патент 2516423 (20.05.2014)
способ подземного блочного выщелачивания полезных ископаемых -  патент 2506423 (10.02.2014)
способ скважинного выщелачивания золота из глубокозалегающих россыпей и техногенных минеральных образований -  патент 2504648 (20.01.2014)
способ геотехнологической переработки некондиционного сульфидного рудного материала, содержащего цветные металлы и железо -  патент 2502869 (27.12.2013)
способ извлечения дисперсного золота из упорных руд -  патент 2497962 (10.11.2013)
способ подготовки рудных тел на месте залегания к выщелачиванию полезных компонентов -  патент 2495238 (10.10.2013)
поточная линия для круглогодичного кучного выщелачивания металлов из руд -  патент 2493364 (20.09.2013)
поточная линия для круглогодичного кучного выщелачивания благородных металлов в криолитозоне -  патент 2493363 (20.09.2013)
способ добычи редких металлов по технологии подземного скважинного выщелачивания и устройство для его реализации -  патент 2478780 (10.04.2013)
способ извлечения металлов из металлсодержащего минерального сырья -  патент 2476610 (27.02.2013)
Наверх