способ изготовления полупроводниковых пластин

Классы МПК:H01L21/302 для изменения физических свойств или формы их поверхностей, например травление, полирование, резка
Автор(ы):,
Патентообладатель(и):Государственный научно-исследовательский институт "Пульсар"
Приоритеты:
подача заявки:
1996-03-15
публикация патента:

Изобретение относится к полупроводниковой технике и направлено на повышение технологичности процессов механической обработки, выхода годных пластин, в частности, из материалов группы A3B5 в случае получения пластин с допуском диаметра способ изготовления полупроводниковых пластин, патент № 2105380 0,3 мм и менее. Сущность изобретения: в способе изготовления полупроводниковых пластин, включающем калибрование монокристалла, изготовление основного и вспомогательных срезов, резку монокристалла на пластины, калибрование монокристалла проводят до диаметра, по крайней мере, на 2 мм более диаметра пластин, срезы изготавливаются длиной L, равной L = lспособ изготовления полупроводниковых пластин, патент № 2105380D/d, где l - длина среза на пластине; D - диаметр калиброванного монокристалла; d - диаметр пластин, а после резки монокристалла на пластины последние центрируют относительно основного среза и проводят их дополнительное калибрование до заданного диаметра пластин. 1 табл., 2 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Способ изготовления полупроводниковых пластин, включающий калибрование монокристалла, изготовление основного и вспомогательных срезов, резку монокристалла на пластины, отличающийся тем, что калибрование монокристалла проводят до диаметра, по крайней мере на 2 мм более диаметра пластин, срезы изготавливают длиной

L I способ изготовления полупроводниковых пластин, патент № 2105380 D/d,

где I длина среза на пластине;

D диаметр калиброванного монокристалла;

d диаметр пластин,

а после резки монокристалла на пластины последние центрируют относительно основного среза и проводят их дополнительное калибрование до заданного диаметра пластин.

Описание изобретения к патенту

Изобретение относится к полупроводниковой технике и может быть использовано в микроэлектронике при производстве пластин из полупроводниковых материалов, особенно материалов с повышенной хрупкостью, таких как материалы группы A3B5, с допуском диаметра способ изготовления полупроводниковых пластин, патент № 2105380 0,3 мм и менее.

Известен способ изготовления полупроводниковых пластин [1], по которому исходные монокристаллы шлифуют (калибруют) до точного диаметра, затем изготавливают основной и дополнительный срезы по всей длине монокристалла. При этом монокристаллы калибруют до заданного диаметра пластин, оставляя припуск на возможное травление на глубину 0,1-0,5 мм для устранения имеющихся дефектов. После указанной подготовки монокристалла ведут резку монокристалла на пластины, используя станки резки алмазными кругами с внутренней режущей кромкой.

Данный технологический процесс распространен для многих полупроводниковых материалов, особенно для кремния, и благоприятен при допуске диаметра пластин способ изготовления полупроводниковых пластин, патент № 2105380 0,5 мм. В случае резки монокристаллов из материалов группы A3B5, когда необходимо получить пластины с допуском диаметра способ изготовления полупроводниковых пластин, патент № 2105380 0,3 мм и менее, на отдельных пластинах при выходе алмазного круга из монокристалла происходит скол, уходящий вглубь пластины за пределы минимального допуска диаметра и неустранимый при механическом шлифовании торца пластин.

Аналогичные проблемы, характеризуемые повышенным браком пластин из хрупких материалов, возникают при изготовлении полупроводниковых пластин с допуском диаметра способ изготовления полупроводниковых пластин, патент № 2105380 0,3 мм и менее [2].

Наиболее близким к предлагаемому техническому решению является способ [3] , включающий калибрование монокристалла, изготовление основного и вспомогательных срезов по всей длине монокристалла, резку монокристалла на пластины. Основным недостатком данного способа обработки является то, что монокристалл вначале калибруют до заданного диаметра пластин с допуском способ изготовления полупроводниковых пластин, патент № 2105380 0,5 мм. Затем при резке хрупких материалов, особенно материалов группы A3B5, наблюдаются сколы на пластинах, которые практически не устранимы, так как глубоко проходят вглубь пластин в ее рабочую область. Количество брака резко возрастает, если требуется изготовить полупроводниковые пластины по международным стандартам SEMI с допуском диаметра способ изготовления полупроводниковых пластин, патент № 2105380 0,3 мм и менее. Проведенные нами практические работы с материалами группы A3B5 показали, что брак по способу-прототипу резко возрастает при обработке монокристаллов в ряду

GaAs способ изготовления полупроводниковых пластин, патент № 2105380 GaP способ изготовления полупроводниковых пластин, патент № 2105380 GaSb способ изготовления полупроводниковых пластин, патент № 2105380 InP способ изготовления полупроводниковых пластин, патент № 2105380 InAs способ изготовления полупроводниковых пластин, патент № 2105380 InSb (1)

В этом ряду наблюдается увеличение размеров сколов на пластинах.

Таким образом, для получения продукции, соответствующей международным стандартам SEMI, способ-прототип технологически не оптимален из-за больших потерь дорогостоящего полупроводникового материала, так как характеризуется низким процентом выхода годных пластин.

Целью изобретения является повышение выхода годных полупроводниковых пластин, в частности, при обработке материалов группы A3B5 и в случае получения пластин с допуском диаметра способ изготовления полупроводниковых пластин, патент № 2105380 0,3 мм и менее.

Поставленная цель достигается тем, что по способу изготовления полупроводниковых пластин, включающему калибрование монокристалла, изготовление основного и вспомогательных срезов по всей длине монокристалла, резку монокристалла на пластины, калибрование монокристалла проводят до диаметра, по крайней мере, на 2 мм более диаметра пластин, срезы изготавливаются длиной L, равной

L = lспособ изготовления полупроводниковых пластин, патент № 2105380D/d, (2)

где l - длина среза на пластине;

D - диаметр калиброванного монокристалла;

d - диаметр пластин,

а после резки монокристалла на пластины последние центрируют относительно основного среза и проводят дополнительное калибрование до заданного диаметра пластин.

Принципиально новым в предлагаемом способе является то, что разрезаемый на пластины монокристалл имеет диаметр, по крайней мере, на 2 мм больше диаметра пластин. За счет этого возникшие при резке монокристалла сколы на пластинах фактически располагаются за пределами рабочей области пластин. Путем калибрования таких пластин эти сколы легко удаляются, что позволяет увеличить выход годных пластин при обработке. Нами ограничен только нижний предел диаметра калиброванного монокристалла как

D способ изготовления полупроводниковых пластин, патент № 2105380 d + 2 мм. (3)

Верхний предел определяется, с одной стороны, экономической целесообразностью (исходным выращенным монокристаллом), с другой стороны, необходимостью получения цилиндрической поверхности монокристалла для возможности формирования на нем срезов по всей длине монокристалла. Кроме того, нами отмечается, что для материалов монокристаллов, расположенных в ряду (1) левее, диаметр калиброванного монокристалла должен быть больше. Например, для пластин GaSb диаметром d = 50,8 мм диаметр калиброванного монокристалла должен быть

Dmin = d + 2 = 50,8 + 2 = 52,8 мм;

для пластин InSb такого же диаметра -

Dmin = d + 3,2 = 50,8 + 3,2 = 54 мм.

При диаметре калиброванного монокристалла D < d + 2 практически наблюдается увеличение брака пластин, так как технологически сложно устранить сколы на пластинах, полученные при резке, что связано также с точностью центровки пластин относительно основного среза при их калибровании.

Новым в изобретении является то, что при калибровании исходного монокристалла до диаметра D размеры срезов L выбирают по формуле (2). В этом случае учитывается то, что срезы формируют по всей длине монокристалла в определенных кристаллографических направлениях и с определенной точностью (обычно способ изготовления полупроводниковых пластин, патент № 2105380 0,5 угл. град. ), а при дополнительном калибровании пластин поверхности срезов обрабатывать нельзя.

При калибровании пластин длина срезов L уменьшается до заданного значения l. Для калибрования пластин последние центрируются относительно основного среза, т.е. находят ось вращения пластины на круглошлифовальном станке, на котором обычно ведут обработку монокристаллов. Пример выполнения этого приема показан на фиг. 1 и 2 (фиг. 1 - пластина после резки монокристалла, фиг. 2 - столик для наклейки пластин для их калибрования).

При наклейке пластины на столик совмещают основной срез длиной L на пластине со срезом l на столике. Затем перемещают столик вдоль направления MON так, чтобы совместить точку 01 столика с прямой MN, а имеющийся скол на пластине вывести за пределы диаметра d столика. Центрирование пластины относительно основного среза позволяет избавиться от скола, расположенного в любом по периферии пластин месте.

Таким образом, предложенная в изобретении совокупность отличительных признаков позволяет решать поставленную цель изобретения. Данное техническое решение обладает изобретательским уровнем, так как элементы новизны в данной заявке не предполагают очевидности для специалистов. Калибрование отрезанных пластин с центровкой их относительно основного среза дает принципиально новое построение технологического процесса получения полупроводниковых пластин с высоким выходом годных и с геометрическими габаритными размерами и кристаллографической ориентацией по пластине и срезам в соответствии с SEMI.

Пример 1. Изготавливают пластины InSb (100) способ изготовления полупроводниковых пластин, патент № 2105380 0,5 угл.град. диаметром d = 50,8 способ изготовления полупроводниковых пластин, патент № 2105380 0,3 мм с основным срезом (110) способ изготовления полупроводниковых пластин, патент № 2105380 0,5 угл. град. длиной lо = 14-16 мм и вспомогательным срезом (110) способ изготовления полупроводниковых пластин, патент № 2105380 1 угл. град. длиной lв = 7-9 мм толщиной 1000 мкм.

Берут исходный некалиброванный монокристалл InSb диаметром от 54 до 56 мм по его длине. Монокристалл на круглошлифовальном станке с помощью круга зернистостью АСР 60/53 калибруют до диаметра D = 54 мм. Допускаются недошлифованные участки цилиндрической поверхности. Формирование цилиндрической поверхности позволяет точно изготовить срезы по кристаллографической ориентации и выдержать длину срезов. На станке Алмаз-6М изготавливают основной и вспомогательный срезы в соответствии с заданной кристаллографической ориентацией и размерами, определенными по формуле (2) для основного среза

Lо = lоспособ изготовления полупроводниковых пластин, патент № 2105380D/d = 16способ изготовления полупроводниковых пластин, патент № 210538054 / 50,8 = 17 мм,

для вспомогательного среза

Lв = lвспособ изготовления полупроводниковых пластин, патент № 2105380D/d = 9способ изготовления полупроводниковых пластин, патент № 210538054 / 50,8 = 9,5 мм.

Затем монокристалл наклеивают на графитовую подложку и выполняют резку на пластины толщиной 1000 мкм, обеспечивая выход алмазного круга АСР 60/40 диаметром 422 мм в графитовую подложку. Скорость подачи равна 6-8 мм/мин, частота вращения алмазного круга 1100-1300 об/мин, охлаждение - проточная вода. 90% отрезанных пластин имеют сколы различной глубины в месте входа алмазного круга в графитовую подложку.

Отрезанные пластины наклеивают на столик (фиг. 2), совмещая соответствующие срезы на пластинах и столике. Столик с пакетом пластин устанавливают на круглошлифовальном станке 3А1ОП. Пакет пластин, отцентрированный относительно основного среза, калибруют до диаметра d = 50,8 мм. После этого пластины расклеивают и отмывают от клея. При контроле качества обработки выход годных пластин составил 92% от числа отрезанных. На этих пластинах полностью отсутствуют сколы и недошлифованные участки.

Примеры 2-9 сведены в таблицу. Примеры 2-5 соответствуют заявленному способу. Примеры 6-8 поясняют необходимость обеспечения заявленных диапазонов отличительных признаков. Пример 9 характеризует способ-прототип.

Как видно из таблицы, предлагаемый способ по сравнению со способом-прототипом позволяет резко увеличить выход годных пластин с размерами и ориентацией, соответствующими стандартам SEMI, на которых не допускается по периферии наличие каких-либо сколов и недошлифованных участков.

Технико-экономическая эффективность предлагаемого способа изготовления полупроводниковых пластин по сравнению с прототипом заключается в повышении технологичности процессов механической обработки, в обеспечении высокого выхода годных пластин, что снижает потери дорогостоящих полупроводниковых материалов в серийном производстве изделий электронной техники.

Класс H01L21/302 для изменения физических свойств или формы их поверхностей, например травление, полирование, резка

способ изготовления сквозных отверстий в кремниевой подложке -  патент 2525668 (20.08.2014)
способ изготовления микромеханического вибрационного гироскопа -  патент 2485620 (20.06.2013)
способ предэпитаксиальной обработки поверхности германиевой подложки -  патент 2483387 (27.05.2013)
способ полирования полупроводниковых материалов -  патент 2457574 (27.07.2012)
способ доводки ориентации пластин полупроводниковых и оптических материалов -  патент 2411606 (10.02.2011)
способ лазерного отжига кремниевой подложки, содержащей имплантированные слои -  патент 2368703 (27.09.2009)
способ формирования висящих конструкций -  патент 2367591 (20.09.2009)
способ изготовления пластин полупроводниковых и оптических материалов -  патент 2337429 (27.10.2008)
способ получения атомно-гладкой поверхности подложки арсенида галлия -  патент 2319798 (20.03.2008)
способ полировки кристаллов хлорида серебра -  патент 2311499 (27.11.2007)
Наверх