способ определения стрессустойчивости у лабораторных животных

Классы МПК:A61B5/05 измерение с помощью электрического тока или магнитных полей для диагностических целей
G01N27/02 измерением полного сопротивления материалов 
Автор(ы):, , , , ,
Патентообладатель(и):Волгоградский научно-исследовательский противочумный институт
Приоритеты:
подача заявки:
1995-03-10
публикация патента:

Использование: в экспериментальной биологии, для определения стрессустойчивости у лабораторных животных. Сущность: изобретения отбирают лабораторных животных по общим критериям здоровья, затем отобранных животных подвергают воздействию переменного электрического тока, определяют уровень минимального порога болевой чувствительности и при значениях минимального порога болевой чувствительности для кроликов до 25 В, белых мышей - до 13 В, белых крыс - до 21 В, золотистых хомячков - до 21 В, морских свинок - до 16 В относят животных к группе с низкой стресс устойчивостью, при значениях минимального порога болевой чувствительности для кроликов от 25 до 49 В, белых мышей - от 13 до 15 В, белых крыс - от 21 до 23 В, золотистых хомячков - от 21 до 24 В, морских свинок - от 16 до 20 В относят животных к группе со средней стрессустойчивостью, при значениях минимального порога болевой чувствительности для кроликов свыше 49 В, белых мышей - свыше 15 В, белых крыс - свыше 23 В, золотистых хомячков - свыше 24 В, морских свинок - свыше 29 В относят животных к группе с высокой стрессустойчивостью. Способ прост, позволяет получить результат, независимый от возможных внешних воздействий. 1 табл.
Рисунок 1

Формула изобретения

Способ определения стрессустойчивости у лабораторных животных, включающий предварительный отбор животных по общим критериям здоровья, отличающийся тем, что животных подвергают воздействию переменного электрического тока, определяют уровень минимального порога болевой чувствительности и при значениях минимального порога болевой чувствительности для кроликов до 25 В, белых мышей до 13 В, белых крыс до 21 В, золотистых хомячков до 21 В, морских свинок до 16 В относят животных к группе с низкой стрессустойчивостью, при значениях минимального порога болевой чувствительности для кроликов от 25 до 49 В, белых мышей от 13 до 15 В, белых крыс от 21 до 23 В, золотистых хомячков от 21 до 24 В, морских свинок от 16 до 20 В относят животных к группе со средней стрессустойчивостью, при значениях минимального порога болевой чувствительности для кроликов свыше 49 В, белых мышей свыше 15 В, белых крыс свыше 23 В, золотистых хомячков свыше 24 В, морских свинок свыше 20 В относят животных к группе с высокой стрессустойчивостью.

Описание изобретения к патенту

Изобретение относится к экспериментальной биологии, а более конкретно к стандартизации лабораторных животных.

Известны различные способы определения стрессустойчивости:

1. Гаркави Л.Х. и др. Адаптационные реакции и резистентность организма. -Ростов-на-Дону, 1990. 224 с.

2. Надводнюк А.И. и др. Стресс у сельскохозяйственных животных // Механизмы развития стресса. Кишинев: Штиинца, 1987. с. 210-217.

3. Селье Г. Концепция стресса как мы ее представляем в 1976 году // Новое о гормонах и механизме их действия. Киев, 1977 с. 27-51.

4. Фурдуй Ф.И. Физиологические механизмы стресса и адаптации при остром действии стресс-факторов. Кишинев: Штиинца, 1986, с.238.

Используется способ определения стрессустойчивости лабораторных животных, предлагаемый К. В. Судаковым, Е.А.Юматовым, Л.С.Ульянинским в статье "Системные механизмы эмоционального стресса", опубликованной в сборнике АН МССР- Кишинев: Штиинца, 1987. с. 52-79, где прогностическим критерием устойчивости к эмоциональному стрессу является оценка двигательной активности.

Однако, используемый способ предусматривает применение специального оборудования, требует значительного времени для учета двигательной активности, а в случае возникновения даже незначительных внешних воздействий не позволяет получить истинных результатов.

Целью данного изобретения является экспресс дифференциация экспериментальных животных по степени стрессустойчивости.

Поставленная цель достигается тем, что у животных, отбираемых для опыта, определяют уровень общей реактивности организма, путем воздействия переменного электрического тока, с регистрацией порога болевой чувствительности. В качестве контактирующего проводника использует электропол, представляющий собой диэлектрическую стеклотексталитовую пластину (30х50 см), на рабочей поверхности которой поперечно закреплены медные шины шириной 6 мм с расстоянием между ними 3мм для оценки кроликов, и шины шириной 3мм с расстоянием между ними 1,5 мм для оценки лабораторных мышей, крыс, морских свинок, золотистых хомячков. Отбираемых животных помещают на электропол, предварительно увлажнив его поверхность электролитом для стандартизации параметров воздействия электротока. В качестве электролита используют 0,005 М раствор. Напряжение подают через лабораторный автотрансформатор, между соседними токопроводящими шинами, и плавно увеличивают от 0 до 80 В для кроликов и до 30 В для мелких лабораторных животных с индикацией на вольтметре. Уровень общей реактивности организма определяют по порогу болевой чувствительности в момент появления реакции устранения конечностей с одновременной регистрацией значения подаваемого напряжения. К высокому уровню общей реактивности организма относят животных имеющих минимальный порог болевой чувствительности в следующих значениях напряжения по видам:

кролики до 25 В;

белые мыши до 13 В;

белые крысы до 21 В;

золотистые хомячки до 21 В;

морские свинки до 16 В;

Для животных со средним уровнем общей реактивности границы порога болевой чувствительности находятся в пределах:

кролики 25-49 В;

белые мыши 13-15 В;

белые крысы 21-23 В;

золотистые хомячки 21-24 В;

морские свинки 16-20 В.

Животные с низким уровнем общей реактивности организма обладают максимальными значениями порога болей чувствительности:

кролики свыше 49 В;

белые мыши свыше 15 В;

белые крысы свыше 23 В;

золотистые хомячки свыше 24 В;

морские свинки свыше 20 В;

При этом животные с высоким уровнем общей реактивности организма обладают низкой стрессустойчивостью, животные со средним уровнем реактивности средней стрессустойчивостью, а животные с низким уровнем высокой стрессустойчивостью.

Пример 1. У 32-х белых крыс, предварительно отобранных по общим критериям здоровья, определили индивидуальную стрессустойчивость с учетом уровня общей реактивности организма, выявив порог болевой чувствительности. Затем, этих же животных тестировали на устойчивость к стрессу общепринятым способом. Всех подопытных крыс подвергали воздействию иммобилизационного эмоционального стресса. Степень стрессустойчивости определяли по динамике уровня исследовательской активности. Для статистической обработки полученных результатов использовали корреляционный анализ и вычисление критерия Вилкоксона-Манна-Уитни. Установлена обратная корреляционная связь (p< 0,05) между динамикой исследовательской активности и порогом болевой чувствительности, что свидетельствует об обратной корреляционной связи стрессустойчивости и уровня общей реактивности организма.

Пример 2. Из кроликов, предварительно подобранных по общим критериям здоровья было сформировано три группы (по 10 животных в каждой) с учетом уровня общей реактивности организма. Затем у всех животных определили содержание 17 ОКС в моче, считая, что данный показатель отражает степень стрессустойчивости организма (Г. Селье, 1976). Всех подопытных животных подвергали болевому стрессу путем воздействия электротока. Степень стрессустойчивости определяли по динамике морфологического состава клеточных элементов белой крови. Статистический анализ полученных результатов проводили согласно рекомендациям Монцевичюте-Эрингене. Установлена статистическая достоверность различий содержаний 17 ОКС между животными с высоким и низким уровнем общей реактивности организма (p< 0,04). Через 30 мин после стресс-воздействия лейкоцитарный показатель у кроликов обладающих высоким уровнем общей реактивности организма снизился на 0,23 ед, что свидетельствует о развитии острого стресса (таблица). Таким образом выявлена зависимость стрессустойчивости от уровня общей реактивности организма с учетом содержания 7 ОКС в моче.

Пример 3. У кроликов, предварительно отобранных по общим критериям здоровья, определили индивидуальную стрессустойчивость с учетом уровней общей реактивности организма, сформировав 3 группы по 10 животных. Затем, у подопытных кроликов было выявлено содержание II ОКС в плазме крови, характеризующее степень стрессустойчивости организма (Ф.И.Фурдуй, 1986). Всех кроликов подвергали болевому стрессу путем внутрикожного введения полного адъюванта Фрейнда. Степень стрессустойчивости определяли по динамике уровня II ОКС и соотношению клеточных элементов белой крови. Статистический анализ результатов выполняли методом Монцевичюте-Эрингене. Установлена статистическая достоверность различий фоновых значений уровня II ОКС между группами животных с высоким и низким уровнем общей реактивности организма (p< 0,02). При этом у кроликов обладающих высоким уровнем общей реактивности содержание II ОКС составило 271,62 способ определения стрессустойчивости у лабораторных   животных, патент № 2098015 42,9 мг/л, а у животных с низким уровнем - 152,50способ определения стрессустойчивости у лабораторных   животных, патент № 20980158,0 мг/л. Через 30 мин после стресс-воздействия у животных характеризующихся высоким уровнем реактивности наблюдали снижение уровня общих II ОКС в плазме крови на 62 мг/л и уменьшение лейкоцитарного показателя на 0,21 ед, что безусловно является показателем развития острого стресса. В группе кроликов со средним уровнем реактивности исследуемые показатели снизились незначительно, а в группе с низким уровнем несколько повысились. Таким образом выявлена зависимость стрессустойчивости от уровня общей реактивности организма с учетом содержания II ОКс в плазме крови.

Использование данного способа по сравнению с прототипом имеет ряд преимуществ:

1) снижение времени тестирования;

2) получение метода исследования;

3) получение наиболее стабильного не зависимого от возможных внешних воздействий, результата.

Класс A61B5/05 измерение с помощью электрического тока или магнитных полей для диагностических целей

устройство для контроля состояния здоровья -  патент 2529808 (27.09.2014)
многоканальные эндоректальные катушки и интерфейсные устройства для них -  патент 2528034 (10.09.2014)
следящее устройство для токовой локализации -  патент 2527152 (27.08.2014)
конструкция и способ для обнаружения и/или определения местонахождения магнитного материала в области воздействия -  патент 2525946 (20.08.2014)
устройство и способ измерения локальной скорости жидкости -  патент 2524974 (10.08.2014)
многоканальные эндоректальные катушки и интерфейсные устройства для них -  патент 2523610 (20.07.2014)
следящая система, аппаратура и способ позиционирования для беспроводного мониторинга уровня ph в пищеводе -  патент 2522970 (20.07.2014)
способ контроля жизнеспособности паренхиматозного органа, подлежащего трансплантации -  патент 2519943 (20.06.2014)
способ диагностики функционального состояния симпатической нервной системы шейного отдела позвоночника у больных с вертеброгенной цереброваскулярной недостаточностью -  патент 2514549 (27.04.2014)
устройство для измерения и способ определения регионарного потребления/перфузии кислорода -  патент 2514329 (27.04.2014)

Класс G01N27/02 измерением полного сопротивления материалов 

способ и система автоматизированного контроля процессов в первичных отстойниках, вторичных отстойниках и/или отстойниках-илоуплотнителяx очистных сооружений объектов водоотведения жилищно-коммунального хозяйства -  патент 2522316 (10.07.2014)
способ определения концентрации компонентов смеси высокоразбавленных сильных электролитов -  патент 2506577 (10.02.2014)
способ определения остаточной водонасыщенности и других форм связанной воды в материале керна -  патент 2502991 (27.12.2013)
устройство для измерения удельной электропроводности пластичного вещества -  патент 2498283 (10.11.2013)
способ определения содержания водорода в титане -  патент 2498282 (10.11.2013)
способ определения электрических характеристик и/или идентификации биологических объектов и устройство для его осуществления -  патент 2488104 (20.07.2013)
устройство для измерения объемной концентрации пузырьков газа в жидкости -  патент 2485489 (20.06.2013)
трехэлектродный датчик -  патент 2482469 (20.05.2013)
способ селективного определения концентрации аммиака и его производных в газовой среде -  патент 2473893 (27.01.2013)
способ определения электрофизического параметра порошкообразных материалов и устройство, его осуществляющее -  патент 2467319 (20.11.2012)
Наверх