способ измерения свойств парамагнитных газов

Классы МПК:G01N21/17 системы, в которых на падающий свет влияют свойства исследуемого материала
Автор(ы):,
Патентообладатель(и):Еньшин Анатолий Васильевич,
Илиодоров Владимир Александрович
Приоритеты:
подача заявки:
1993-11-03
публикация патента:

Использование: изобретение относится в нелинейной оптике, а именно к средствам управления светом параметрами элементарных частиц и может быть использовано для изменения свойств парамагнитных веществ на основе макроскопических квантовых эффектов. Сущность изобретения: способ изменения свойств парамагнитных газов включает формирование импульса бигармонического лазерного излучения, воздействие на парамагнитный газ бигармоническим лазерным излучением и спинполяризацию парамагнитного газа бигармоническим лазерным излучением. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

Способ изменения свойств парамагнитных газов, заключающийся в том, что формируют импульс лазерного излучения и воздействуют на газ лазерным излучением, отличающийся тем, что импульс лазерного излучения формируют бигармоническим, воздействие на газ осуществляют бигармоническим лазерным излучением и под действием этого излучения производят спинполяризацию парамагнитного газа, при этом разность частот бигармоники в зависимости от вещества выбирают равной типичной частоте элементарных возбуждений в парамагнитном газе.

Описание изобретения к патенту

Изобретение относится к нелинейной оптике, а именно к средствам управления светом параметрами элементарных частиц и может быть использовано для изменения свойств парамагнитных веществ на основе макроскопических квантовых эффектов.

Известен способ изменения свойств парамагнитного газа в сжиженном состоянии [1] который заключается в получении парамагнитного газа (гелий - 3), охлаждением его до температуры близкой к абсолютному нулю, одновременно формируется мощное магнитное поле, с помощью которого осуществляется воздействие на сжиженный газ. При этом спины атомов гелия 3 ориентируются вдоль силовых линий внешнего магнитного поля, т.е. происходит спинполяризация газа. При этом изменяются макроскопические свойства квантового газа, в частности теплопроводность, вязкость и др. и эти изменения могут быть весьма значительны (в несколько раз и даже порядков).

Однако у этого способа есть два крупных недостатка, которые ограничивают область его практического использования решением исследовательских задач. Недостатки заключаются в необходимости охлаждения газа до криогенных температур и использовании мощных магнитных полей. Это в свою очередь настолько усложняет и удорожает установку, реализующую описанный способ, что фактически исключает возможность его практического использования.

Известен способ изменения электрофизических свойств газа [2] прототип, заключающийся в формировании импульса лазерного излучения, формировании пучка лазерного излучения, воздействии на газ лазерным излучением, поглощении квантов электромагнитного излучения атомами газа, отрыв возбужденных электронов от отдельных оболочек атомов и образование носителей зарядов в виде свободных электронов и ионов. Следствием этого является изменение электрофизических свойств газового канала (проводимость, коэффициентов отражения, поглощения, пропускания радиоволн и др.).

На фиг. 1 представлен описанный способ, где операции, входящие в его состав, обозначены следующим образом:

1 формирование импульса лазерного излучения;

2 формирование пучка лазерного излучения;

3 воздействие на газ лазерного излучения;

4 поглощение квантов электромагнитного излучения атомами газа;

5 отрыв возбужденных электронов от электронных оболочек атомов и образование носителей зарядов в виде свободных электронов и ионов.

Недостатками описанного способа являются большие энергозатраты на изменение электрофизических свойств газа, и кроме того, изменяются лишь электрофизические свойства и то на непродолжительное время (единицы микросекунд), что ограничивает возможность его практического использования.

Целью изобретения является устранение недостатков прототипа, а именно уменьшение энергозатрат на изменения свойств парамагнитного газа и расширение числа изменяемых свойств.

Для достижения этой цели в известный способ, заключающийся в формировании импульса лазерного излучения, формировании пучка лазерного излучения, воздействии на газ лазерного излучения введена операция спинполяризации парамагнитного газа, при этом импульс лазерного излучения формируется бигармоническим, а на парамагнитный газ воздействует бигармоническое лазерное излучение.

Изложенный способ поясняется на фиг. 2, где приведена последовательность операций, выполнение которых позволяет достигнуть поставленной цели. На фиг. 2 обозначено:

1 формирование импульса бигармонического лазерного излучения;

2 формирование пучка бигармонического лазерного излучения;

3 воздействие на газ бигармонического лазерного излучения;

4 спинполяризация парамагнитного газа;

способ измерения свойств парамагнитных газов, патент № 2094775 известные операции;

способ измерения свойств парамагнитных газов, патент № 2094775 операции, отличающиеся от прототипа режимом их проведения;

способ измерения свойств парамагнитных газов, патент № 2094775 новые по сравнению с прототипом операции.

Принципиальным моментом в предлагаемом способе является формирование бигармонического (двухчастотного) лазерного излучения. Разностная частота бигармоники близка к типичным частотам элементарных возбуждений в парамагнитном газе, обусловленных движением ядер и электронов. Численно разность длин волн двух гармоник не превышает долей ангстрема. Причем в предлагаемом способе важна лишь разность длин волн двух гармоник, а значение несущей длины волны существенного значения не имеет.

Операция формирования пучка лазерного излучения требуемой расходимости и диаметра принципиальных отличий от прототипа и других аналогичных технических решений не имеет и поэтому не требует подробного рассмотрения.

Ключевым моментом в предложенном способе является воздействие бигармонического излучения на парамагнитный газ. В отличии от прототипа, где фактически происходит (в зависимости от длины волны лазерного излучения) одно и многофотонная ионизация газа, т.е. молекулы газа в возбужденном состоянии за счет поглощения фотонов теряют электроны, в предлагаемом способе взаимодействие молекул парамагнитного газа происходит одновременно с двумя квантами лазерного излучения, имеющими различные частоты. При этом спины электронов и/или ядер атомов, попадающих в магнитное поле разностной электромагнитной волны ориентируются вдоль силовых линий ее магнитного поля. Сечение взаимодействия бигармонического лазерного излучения с парамагнитным газом оказывается на 5 6 порядков превышает сечение взаимодействия релеевского рассеяния при ионизации газа.

Таким образом, при воздействии на парамагнитный газ бигармонического лазерного излучения с определенной разностью частот происходит его спинполяризация и газ переходит в спинполяризованное состояние. При этом между отдельными молекулами газа начинают происходить дальнодействующие обменные взаимодействия, называемые спиновыми волнами и макроскопические свойства газа резко изменяются. В частности, изменяются вязкость и теплопроводность, магнитная проницаемость, коэффициенты поглощения и отражения электромагнитного (в том числе оптического) излучения. В результате спинполяризации газа в нем также происходит образование магнитных диполей, эквивалентных по своим свойствам электрическим диполям или свободным зарядам, появляющимся в частности при их взаимодействии с радиоволнами. Степень спинполяризации и, следовательно величина (диапазон) изменения его свойств зависит от мощности бигармонического лазерного излучения, с увеличением которой усиливается спинполяризация газа. Поляризуемость парамагнитного газа также зависит от его давления и увеличивается пропорционально его росту. Важной особенностью спинполяризованного состояния парамагнитного газа, влияющей на возможность практического использования предлагаемого способа является то, что обменные взаимодействия между молекулами газа в виде спиновых волн приводят к возникновению самоподдерживающегося механизма, препятствующего разрушению квазикристаллической структуры, образовавшейся в парамагнитном газе при прохождении бигармонического лазерного излучения. В результате спинполяризованный газ сохраняет свою структуру десятки-сотни миллисекунд.

На фиг. 3 приведена блок-схема варианта установки, реализующей предлагаемый способ, которая содержит: лазер 1, формирующую оптику 2 и парамагнитный газ 3. В свою очередь, лазер 1 содержит активный элемент 1.1, глухое 1.2 и полупрозрачное 1.3 зеркала, лампу накачки 1.4, затвор 1.5 и диспергирующий элемент 1.6, в качестве которого может быть использован интерферометр Фабри-Перо.

Диспергирующий элемент 1.6 обеспечивает выделение двух продольных мод с необходимой разностью частот. Другие элементы лазера не описываются ввиду их очевидного назначения и широко известного применения.

Лазер 1 предназначен для формирования импульсов бигармонического (двухчастотного) лазерного излучения. Формирующая оптика представляет из себя известную коллимирующую оптическую систему, с помощью которой обеспечиваются расходимость и диаметр пучка лазерного излучения. Он может быть сфокусированным в объем 3 парамагнитного газа либо быть близким к параллельному.

В качестве парамагнитного газа может быть выбран любой газ, имеющий нескомпенсированные спины электронных оболочек или ядер в молекулах газа. В частности в качестве квантового газа могут быть использованы парамагнитные компоненты воздуха: молекулы азота, ядерный спин которых равен двум, и соответствующее число спиновых состояний пяти (+2; +1; 0) и молекулы кислорода, электронный спин которых равен 1, а число спиновых состояний трем (+1; 0). При использовании парамагнитного газа (и любых веществ с парамагнитными свойствами в газообразном состоянии), не входящих в состав атмосферы, этот газ должен быть заключен в герметичный сосуд с прозрачным окном для прохождения лазерного излучения либо инжектироваться в атмосферу с интенсивностью, обеспечивающей поддержание требуемой его концентрации.

Работает установка (фиг. 3) следующим образом.

Импульс запуска подается на лазер, по которому срабатывает лампа вспышка 1.4, а затем затвор 1.5. При открытии затвора между зеркалами 1.2 и 1.3, установленных на определенном расстоянии, с помощью диспергирующего элемента 1.6 создаются условия для усиления только двух продольных мод.

Двухчастотное лазерное излучение поступает с полупрозрачного зеркала 1.2 на вход формирующей оптики 2. В этой оптической системе в зависимости от направления применения способа происходит преобразование диаметра и расходимости пучка бигармонического лазерного излучения до требуемых значений. Эти параметры могут или уменьшаться для повышения плотности мощности, или увеличиваться для повышения облучаемого газа и т.д. С выхода формирующей оптики 2 бигармоническое лазерное излучение направляется на парамагнитный газ 3, где при взаимодействии бигармонического лазерного излучения происходит спинполяризация газа и изменяются его свойства. В зависимости от назначения технологического процесса, в котором используется предлагаемый способ, лазерные импульсы с необходимой скважностью могут повторятся для поддержания парамагнитного газа в спинполяризованном состоянии либо периодически переводить газ в это состояние.

Оценка технико-экономической эффективности предлагаемого способа по сравнению с прототипом и другими техническими решениями проводилась теоретически и экспериментально.

Экспериментальные исследования предлагаемого способа проводились более 10 лет и показали его высокую эффективность и принципиальную новизну по сравнению с прототипом и другими техническими решениями. Как уже отмечалось, обнаружено, что сечение взаимодействия бигармонического лазерного излучения с парамагнитным газом на 5 6 порядков выше, чем рассеяние с наибольшим сечением. Это позволяло наблюдать эффект спинполяризации при помощи лазера сотни ватт (режим свободной генерации) на длине волн 0,53 мкм. и десятки милливатт на длине волны 0,63 мкм (непрерывный режим гелий неонового лазера). Оценки показывают, что примерно в то же пропорции удается снизить энергозатраты на изменение электрофизических свойств газа. Кроме того, предложенный способ может быть использован для существенного изменения оптических свойств парамагнитных газов (и в частности коэффициента прозрачности воздуха) их кинематических, магнитных и других свойств, что открывает перспективы его широкого применения в различных технологических процессах.

Класс G01N21/17 системы, в которых на падающий свет влияют свойства исследуемого материала

способ определения мольной доли li2o в монокристаллах linbo3 -  патент 2529668 (27.09.2014)
устройство для анализа биологической жидкости -  патент 2500999 (10.12.2013)
способ определения количества присадки "меркаптобензотиазол" в маслах для авиационной техники -  патент 2489716 (10.08.2013)
микроэлектронное сенсорное устройство сенсора для детектирования целевых частиц -  патент 2489704 (10.08.2013)
устройство обработки изображений, способ обработки изображений, устройство захвата томограммы, программа и носитель для записи программы -  патент 2481056 (10.05.2013)
способ определения давности выполнения рукописных текстов и других материалов письма -  патент 2480736 (27.04.2013)
устройство для исследования распространения поверхностных электромагнитных волн (пэв) и средство для исследования влияния тонких пленок и микрообъектов на их распространение -  патент 2480735 (27.04.2013)
комбинированная система фотоакустического и ультразвукового формирования изображений -  патент 2480147 (27.04.2013)
фотоакустическое измерительное устройство -  патент 2475181 (20.02.2013)
количественный анализ тиомочевины и флуоресцеина натрия при их совместном присутствии в пластовых водах -  патент 2473885 (27.01.2013)
Наверх