способ исследования превращений при термической обработке

Классы МПК:C21D11/00 Процесс контроля или регулирования термообработки
C21D1/55 испытания на закаливаемость, например определение конца закалки
Автор(ы):,
Патентообладатель(и):Гладков Николай Васильевич
Приоритеты:
подача заявки:
1992-06-30
публикация патента:

Изобретение относится к области исследования кинетики структурных и фазовых превращений при термической обработке преимущественно крупных деталей, например энергоагрегатов, металлургического и кузнечно-прессового оборудования, включая молотовые штампы, из конструкционных и инструментальных высоколегированных сталей с пониженной скоростью перлитного превращения. Задача изобретения - исследование взаимосвязанных режимов закалки и отпуска без взаимно дополняющих данных изотермического и термокинетического превращений для обоснования сокращенной длительности нагрева при отпуске крупных деталей. Способ заключается в том, что аустенитизацию образца проводят в условиях насыщенности, моделирующих реальные выдержки при нагреве под закалку реальных сечений и садок деталей, а затем образец охлаждают в той же печи до конца интервала устойчивости перлитного превращения, после чего многоступенчато охлаждают в печи магнитометра до частичного мартенситного превращения с последующим многоступенчатым нагревом в той же печи до окончания превращения, при этом количество и параметры ступеней охлаждения и нагрева выбираются в зависимости от режимов реального процесса.

Формула изобретения

Способ исследования превращений при термической обработке, преимущественно крупных деталей из высоколегированных сталей по изменению намагниченности образца, включающий его аустенитизацию, охлаждение, нагрев в печи магнитометра, отличающийся тем, что процессы проводят при моделировании реальных параметров, соотнесении режимов аустенитизации деталей с образцами по одинаковой интенсивности мартенситного превращения, применении многоступенчатых режимов частичного охлаждения с безотрывным нагревом, а количество и температуру ступеней выбирают в зависимости от изменения параметров реальных процессов.

Описание изобретения к патенту

Изобретение относится к области исследования кинетики структурных и фазовых превращений при термической обработке преимущественно крупных деталей, например энергоагрегатов, металлургического и кузнечно-прессового оборудования, включая молотовые штампы, из конструкционных и инструментальных высоколегированных сталей с пониженной скоростью перлитного превращения.

В настоящее время известен способ исследования кинетики превращения переохлажденного аустенита, когда образец небольшого сечения после аустенитизации в соответствующей печи охлаждают с заданной скоростью в другой печи, находящейся в пространстве измерительной катушки магнитометра до окончания превращения, о развитии которого судят по увеличению значений намагниченности насыщения, а полученные данные пересчитывают на объемный процент превращения, для чего соотносят их при определенной температуре с величинами эталонного образца со 100%-ным превращением [1]

Известен также способ исследования кинетики превращения остаточного аустенита при отпуске, когда закаленный образец помещают в печь, нагретую до заданной температуры и выдерживают в ней до конца превращения [3]

В настоящее время известен способ термической обработки крупных деталей, которые, после аустенитизации в условиях реально длительных выдержек при нагреве под закалку и соответствующей насыщенности аустенита, во избежание трещионообразования и повышенного коробления, охлаждают при закалке лишь до частичного мартенситного превращения, после чего незамедлительно перемещают в отпускную печь, нагретую не выше 400oC, температура которой, из-за помещения в нее большой массы закаленных деталей, быстро падает, в течение нескольких часов повышаясь до исходной (не выше 400oC), а затем также медленно нагреваются до температуры высокого отпуска [2]

Известен способ термической обработки молотовых штампов, когда подогрев, нагрев и выдержка при отпуске осуществляется для штампа высотой 250 мм следующим образом: закаленные штампы помещают в печь для отпуска, нагретую до 300oC, нагревают 2 ч при подогреве, затем еще 4 ч до температуры выдержки и выдерживают 2 ч (см. патент ПНР N 91543, 1979).

Известен также способ термической обработки молотовых штампов, когда процесс отпуска осуществляется в одной и той же печи, где эти штампы нагревались и под закалку, а длительность нагрева при отпуске сокращается за счет аккумулированного кладкой (остаточного от нагрева под закалку) тепла, передаваемого нагреваемым закаленным штампам более интенсивно и равномерно, что для штампа высотой 250 мм производится следующим образом: подогрев до температуры 400oC в течение 0,75 ч (не менее), нагрев до температуры 420oC и выдержка не менее 1,5 ч, а всего 3 ч (авт. свид. N 1765210, C 21 D 1/78, 1988).

Известные способы исследования мало приспособлены для изучения взаимосвязанных режимов закалки и отпуска известных способов термической обработки крупных деталей и имеют по отношению к ним следующие существенные недостатки:

1) способы не взаимосвязаны общей цепочкой исследования, где разрыв - охлаждение при закалке до конца (температуры закалочной среды) и нагрев при отпуске от температуры образца (окружающей среды);

2) аустенитизация образцов не взаимосвязана с условиями насыщенности, моделирующими реально длительные выдержки под закалку реальных сечений и садок деталей;

3) исследования в условиях непрерывного охлаждения с заданной скоростью при закалке непрерывного нагрева с заданной при отпуске без дополняющих данных изотермических превращений для обоснования сокращенной длительности нагрева при отпуске крупных деталей.

Сущность изобретения состоит в том, что скорости непрерывного охлаждения с конечной температурой при закалке и непрерывного нагрева с начальной температурой при отпуске исследуются во взаимосвязи с учетом того, что они лишь в совокупности определяют структуру и свойства указанных деталей (а такие экспериментальные данные отсутствуют в имеющихся источниках информации). Скорости непрерывного охлаждения и непрерывного нагрева поверхности и центра реальных сечений и садок деталей будут различны, вследствие чего и температура этих зон к моменту окончания охлаждения при закалке и началу нагрева при отпуске будут различны, что вызывает и различие в структуре и свойствах поверхности и центра. Процессы превращения с непрерывным охлаждением и непрерывным нагревом осуществляются в условиях непрерывного изменения температуры даже при изотермическом отжиге, изотермической закалке и изотермической выдержке для отпуска в реальных сечениях и садках деталей. Но проведение исследований при непрерывном охлаждении и непрерывном нагреве требует единовременной регистрации изменений температуры, характера и полноты развития превращений, что технически достаточно сложно осуществимо и затрудняет широкое применение термокинетического исследования по сравнению с изотермическим, не требующим сложной аппаратуры. Термокинетическое и изотермическое исследования должны взаимно дополняться данными друг друга, что совокупно реализуется предлагаемым способом путем многоступенчатого охлаждения при закалке и многоступенчатого нагрева при отпуске, дающим объединенное и более точное представление о характере и полноте развития превращений в их взаимосвязи.

Пример конкретного выполнения.

Для молотовых штампов высотой от 250 до 600 мм выдержка под закалку при температурах 850.870oC составляет 1,95.4,75 ч, поэтому один образец подвергается аустенитизации при температурах 850.870oC и выдержках 1,95.4,75 ч, а другой при повышенной температуре и выдержке 10 мин. Уменьшение или увеличение интенсивности мартенситного превращения для другого образца со сравниваемым требует уменьшения или увеличения температуры аустенитизации при неизменной выдержке 10 мин. Для деталей типа молотовых штампов и стали 5 ХНМ (и других им подобных марок) со скоростями охлаждения при закалке от 1200 до 300oC/ч исключено выделение феррита, предшествующего перлитному превращению, вследствие высокой устойчивости аустенита в перлитной области, что позволяет производить охлаждение при закалке образца в печи аустенитизации до 550oC, а затем в печи магнитометра до частичного мартенситного превращения. Молотовые штампы охлаждаются в закалочной среде до 150oC на поверхности и до 300oC в центре штампа, что с учетом ранее изложенного предопределяет основное содержание эксперимента: после аустенитизации с повышенных температур, соотнесенных по условиям насыщенности с реальными выдержками при нагреве под закалку через интенсивность мартенситного превращения, уменьшающейся с повышением температуры аустенитизации, образцы, охлажденные сначала с заданной скоростью в печи аустенитизации до 550oC, затем многоступенчато охлаждаются в печи магнитометра до 150oC (или 300oC) там же многоступенчато нагреваются до конца превращения. Соответственно трем известным способам термической обработки применительно к поверхности штампа высотой 250 мм, охлажденной при закалке до 150oC, два образца многоступенчато нагреваются (с несколькими последовательными нагревами и ступенями во времени) по двум режимам:

1) 250oC 2 ч, 300, 350, 400 и 450oC 4 ч, 500oC 2 ч;

2) 300oC 45 мин, 350, 400 и 450oC 45 мин, 500oC 1,5 ч.

Таким образом, основные этапы исследования для молотовых штампов высотой от 250 до 600 мм состоят из следующих последовательных мероприятий:

1. Выбор режимов аустенитизации на образцах размерами 2х10х60 мм из стали 5ХНМ в соответствующей печи магнитометра.

1.1. Нагрев до 850.870oC и выдержка в течение 10 мин.

1.2. Нагрев до 850.870oC и выдержка в течение 1,95.4,75 ч.

1.3. Нагрев до 910, 890 или 930, 870 или 950oC и выдержка в течение 10 мин.

1.4. Полученные данные для образцов, термообработанных согласно подпунктов 1.2 и 1.3, соотносят между собой по одинаковой величине намагниченности при одинаковой температуре частичного мартенситного превращения.

2. Выбор режимов охлаждения при закалке. Для поверхности штампов от 1200oC/ч (высотой 250 мм) по 400oC/ч (высотой 600 мм).

3. Выбор режимов нагрева при отпуске. Для поверхности штампов закаленные образцы нагревают со скоростями от 240oC/ч (высотой 250 мм) по 20oC/ч (высотой 600 мм) до температуры выдержки при 500.600oC.

4. Основная экспериментальная часть. Охлажденные при закалке с заданной скоростью до температуры 150oC на поверхности и 300oC в центре штампа образцы нагревают для отпуска от 150 и 300oC с заданной скоростью до 500.600oC в течение от 1,5 до 20 ч, моделируя режимы реальных процессов отпуска штампов высотой от 250 до 600 мм.

Полученные данные оформляются в виде диаграмм превращений со взаимосвязанными режимами закалки и отпуска.

Класс C21D11/00 Процесс контроля или регулирования термообработки

способ контроля и управления непрерывной термообработкой -  патент 2518039 (10.06.2014)
способ охлаждения горячей полосы, наматываемой в рулон горячей полосы, устройство для охлаждения рулона горячей полосы, устройство управления и/или регулирования и полоса металла -  патент 2499644 (27.11.2013)
устройство для автоматического управления процессом нагрева жидкого металла в газовой отражательной печи -  патент 2497957 (10.11.2013)
способ и установка термической обработки рельсов -  патент 2487177 (10.07.2013)
способ и установка термической обработки рельсов -  патент 2484148 (10.06.2013)
способ автоматической диагностики и управления процессом термосиловой обработки маложестких осесимметричных деталей и устройство для его осуществления -  патент 2466195 (10.11.2012)
установка для контроля охлаждающей способности закалочной среды -  патент 2466194 (10.11.2012)
способ и устройство термической обработки рельсов -  патент 2456352 (20.07.2012)
способ термообработки полосовой стали в печи непрерывного действия с кислородотопливными горелками -  патент 2435869 (10.12.2011)
способ термической обработки изделий из стали и сплавов -  патент 2413777 (10.03.2011)

Класс C21D1/55 испытания на закаливаемость, например определение конца закалки

способ контроля и управления непрерывной термообработкой -  патент 2518039 (10.06.2014)
способ определения полосчатой структуры металла листового проката феррито-перлитных сталей -  патент 2439169 (10.01.2012)
способ определения границ фазовых переходов при перлитном превращении -  патент 2433190 (10.11.2011)
способ оценки работоспособности труб из малоуглеродистой низколегированной стали -  патент 2418076 (10.05.2011)
способ термической обработки изделий из стали и сплавов -  патент 2413777 (10.03.2011)
метод управления остыванием стального листа -  патент 2363740 (10.08.2009)
способ оценки влияния технологических параметров на устойчивость переохлажденного аустенита -  патент 2337145 (27.10.2008)
способ определения устойчивости переохлажденного аустенита -  патент 2312904 (20.12.2007)
способ определения причины пониженной ударной вязкости низкоуглеродистых сталей -  патент 2281975 (20.08.2006)
способ определения качества микроструктуры стали -  патент 2248403 (20.03.2005)
Наверх