способ хранения отработавшего ядерного топлива с оболочками из циркониевых сплавов в приреакторных бассейнах

Классы МПК:G21C19/06 средства для крепления или хранения топливных или управляющих элементов
Автор(ы):, , , , , , ,
Патентообладатель(и):Ленинградская атомная электростанция им.В.И.Ленина
Приоритеты:
подача заявки:
1994-12-07
публикация патента:

Использование: изобретение относится к технологии хранения отработавшего ядерного топлива (ОЯТ) в приреакторных бассейнах (ПБ), в частности, к области коррозионно-безопасного хранения ОЯТ, обеспечения целостности оболочек отработавших тепловыделяющих сборок (ОТВС). Сущность изобретение: снижение выхода и накопления радиолитической перекиси водорода обеспечивается введением в пенал донора ингибитора, двухвалентного железа, обеспечивающего в теплоносителе концентрацию железа в пределах (30-50) мкг/л. Донором двухвалентного железа в водных растворах могут быть изделия из углеродистых сталей: фольга, проволока, опилки, стружка и т.п. Ионы Fe2+, взаимодействуя с продуктами радиолиза O2 и H2O2, препятствуют как радиолитическому образованию H2O2, так и ее накоплению в воде пенала. Предлагаемый способ позволяет повысить коррозионную стойкость оболочек ОТВС при хранении в ПБ и повысить надежность эксплуатации при повторном использовании ОТВС в активной зоне. 1 з.п. ф-лы 1 табл.
Рисунок 1

Формула изобретения

1. Способ хранения отработавшего ядерного топлива с оболочками из циркониевого сплава в приреакторных бассейнах, предусматривающий размещение топлива в бассейне в пеналах с водным теплоносителем, отличающийся тем, что в теплоноситель пенала вводят донор ингибитора двухвалентного железа, обеспечивающий его концентрацию в теплоносителе в пределах 30 50 мкг/л.

2. Способ по п. 1, отличающийся тем, что в качестве донора ингибитора используют фольгу, проволоку, опилки, стружку из углеродистых сталей или их смесь.

Описание изобретения к патенту

Изобретение относится к технологии хранения отработавшего ядерного топлива (ОЯТ) в приреакторных бассейнах (ПБ), в частности, к области коррозионно-безопасного хранения ОЯТ, обеспечения целостности оболочек отработавших тепловыделяющих сборок (ОТВС).

За период пребывания в активной зоне реактора (АЗ) оболочки из циркониевых сплавов твэл, составляющие ТВС, теряют до 30% своей исходной толщины за счет общей коррозии циркониевого сплава при высокой температуре. После выгрузки ОТВС из АЗ их хранят в течение 8-15 суток в воде пеналов, погруженных в водоохлаждаемые приреакторные бассейны (ПБ). Вода является эффективным теплоносителем и защитой от ионизирующего излучения. Затем, герметичные ОТВС перегружают в другой отсек ПБ для дальнейшего хранения под слоем воды в зависимости от степени выгорания топлива. Одно из основных требований, предъявляемых к технологии хранения ОЯТ обеспечение целостности оболочек ОТВС.

В качестве прототипа выбран способ хранения ОЯТ с оболочками из циркониевых сплавов в пеналах приреакторных бассейнов, по ГОСТ 262890-84 "Режим атомных электрических станций с кипящими реакторами большой мощности водно-химический. Показатели качества вспомогательных систем". Способ заключается в хранении ОТВС в пеналах, заполненных химически обессоленной водой (ХОВ).

Недостатком описанного способа является повышенная вероятность разгерметизации оболочек ОТВС вследствие развития коррозии циркония локального типа, особенно в первые 8-15 суток после выгрузки ОТВС из АЗ. В этих условиях вода пенала испытывает максимальное за все время хранения воздействия остаточных теплового и радиационного излучений. Разгерметизация оболочки твэл приводит за счет выхода продуктов деления к резкому возрастанию в отдельных пеналах активности воды.

Задачей, решаемой предлагаемым способом, является повышение коррозионной стойкости ОТВС с оболочками из циркониевых сплавов при промежуточном хранении в пеналах приреакторных бассейнов.

Сущность изобретения заключается в том, что в способе хранения отработавшего ядерного топлива с оболочками из циркониевых сплавов в приреакторных бассейнах в пеналах с водным теплоносителем вводят донор ингибитора двухвалентного железа, обеспечивающий концентрацию Fe2+ в теплоносителе в пределах (30-50) мкг/л. В качестве донора ингибитора предложено использовать фольгу, проволоку, опилки, стружку из углеродистых сталей или их смесь.

Ионы двухвалентного железа, взаимодействуя с кислородом и перекисью водорода, препятствуют ее накоплению в воде пенала. В результате исключается возможность развития локальной коррозии циркониевых оболочек ОТВС под действием перекиси водорода. Образование отложений продуктов коррозии на поверхностях твэлов маловероятно вследствие неизменности в интервале температур 25-100oC растворимости магнетита, образующегося при недостатке кислорода в растворах, и повышения растворимости с ростом температуры (или вблизи более горячей по сравнению с охлаждающей поверхностью твэла) гематита, образующегося в присутствии окислителей.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ отличается от известного использованием в пеналах промежуточного хранения ОТВС приреакторных бассейнов выдержки ОЯТ донора, поставляющего в воду пенала ингибитор, двухвалентное железо, взаимодействующего с перекисью водорода и препятствующего тем самым ее накоплению в растворе и неблагоприятному воздействию H2O2 на оболочку ОТВС из циркониевого сплава; источником двухвалентного железа в водных растворах могут быть изделия из углеродистых сталей: фольга, проволока, опилки, стружка и т.п.

Изобретение осуществляется следующим образом.

В приреакторных бассейнах реакторов типа РБМК-1000 максимальное зафиксированное значение концентрации перекиси водорода 3oC6 мг/л, поэтому для проведения испытаний по контролю изменения содержания H2O2 при 50oC отбирали дистиллированную воду с концентрацией перекиси водорода 5,8 мг/л и разделяли на четыре пробы:

в первую пробу вводили стружку из углеродистый стали из расчета 1 г/л, что соответствует концентрации железа в воде 35 мкг/л;

во вторую пробу вводили стружку из углеродистой стали из расчета 0,4 г/л, что соответствует концентрации железа в воде 14 мкг/л;

в третью пробу вводили стружку из нержавеющей стали типа Х18Н10Т из расчета 1 г/л (коррозия Х18Х10Т практически отсутствует):

четвертая проба контрольная.

Результаты испытаний приведены в таблице.

Из данных таблицы следует, что при 50oC коррозионностойкие материалы малоэффективны; при недостаточной концентрации способ хранения отработавшего ядерного топлива с оболочками   из циркониевых сплавов в приреакторных бассейнах, патент № 207990714 мкг/л) свежерастворенного железа в растворе происходит медленное убывание концентрации перекиси. Эффективное разрушение H2O2 наблюдается при достижении концентрации железа 30 мкг/л и выше.

Класс G21C19/06 средства для крепления или хранения топливных или управляющих элементов

способ упаковки дефектных отработавших твэлов ядерного реактора и устройство для его осуществления -  патент 2524685 (10.08.2014)
герметичный пенал хранения ампул с пучками отработавших тепловыделяющих элементов -  патент 2500045 (27.11.2013)
оборотный пенал временного хранения ампул с пучками отработавших тепловыделяющих элементов -  патент 2493622 (20.09.2013)
способ обращения с отработавшим ядерным топливом реактора рбмк-1000 и устройства для его осуществления -  патент 2491665 (27.08.2013)
способ обращения с отработавшим ядерным топливом реактора рбмк-1000 и устройства для его осуществления -  патент 2490734 (20.08.2013)
устройство для перегрузки ампул с отработавшим ядерным топливом реактора рбмк-1000 -  патент 2483374 (27.05.2013)
чехол для размещения и хранения отработавших тепловыделяющих сборок реактора ввэр-1000 -  патент 2477899 (20.03.2013)
пенал для отработавшего ядерного топлива ввэр-1000 -  патент 2468454 (27.11.2012)
герметичный пенал хранения отработавшего ядерного топлива (варианты) -  патент 2462775 (27.09.2012)
устройство передающее -  патент 2444797 (10.03.2012)
Наверх