устройство для определения модуля второй ортогональной составляющей вектора

Классы МПК:G06G7/22 для нахождения тригонометрических функций; для преобразования координат; для вычисления с помощью векторных величин
Автор(ы):
Патентообладатель(и):Хозрасчетный центр "Интеграл"
Приоритеты:
подача заявки:
1994-03-05
публикация патента:

Изобретение относится к области вычислительной техники и может использоваться в гибридных аналого-цифровых устройствах и системах обработки аналоговых сигналов для определения модуля второй ортогональной составляющей по известным модулям вектора и его первой ортогональной составляющей. Цель изобретения - упрощение устройства и повышение его точности. Устройство содержит аналого-цифровой преобразователь 2, цифроаналоговые преобразователи 3, 7, 11, сумматор 4, генератор 5 синусоидального напряжения, фазосдвигающий блок 6, нуль-орган 8, элемент И 9, счетчик 10, преобразователь 12 переменного напряжения в постоянное, компаратор 13, источник 15 опорного напряжения. 1 з.п. ф-лы, 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

1. Устройство для определения модуля второй ортогональной составляющей вектора, содержащее счетчик, сумматор и компаратор, отличающееся тем, что в него введены фазосдвигающий блок, преобразователь переменного напряжения в постоянное, нуль-орган, элемент И, источник опорного напряжения, аналого-цифровой преобразователь, три цифроаналоговых преобразователя и генератор синусоидального напряжения, выход которого подключен к входу опорного напряжения первого цифроаналогового преобразователя и через фазосдвигающий блок к входу опорного напряжения второго цифроаналогового преобразователя и к входу нуль-органа, инверсный выход которого соединен с первым входом элемента И, выход которого подключен к тактовому входу счетчика, выход которого подключен к цифровым входам второго и третьего цифроаналоговых преобразователей, выход которого является выходом устройства, выход источника опорного напряжения соединен с входами опорного напряжения третьего цифроаналогового преобразователя и аналого-цифрового преобразователя, информационный вход которого является первым входом устройства, а выход подключен к цифровому входу первого цифроаналогового преобразователя, выходы первого и второго цифроаналоговых преобразователей соединены с входами сумматора, выход которого подключен к входу преобразователя переменного напряжения в постоянное, вход сброса которого соединен с входом обнуления счетчика и с пусковым входом устройства, выход преобразователя переменного напряжения в постоянное и второй вход устройства подключены соответственно к инвертирующему и неинвертирующему входам компаратора, выход которого соединен с вторым входом элемента И.

2. Устройство по п.1, отличающееся тем, что преобразователь переменного напряжения в постоянное содержит коммутатор, диод, конденсатор и резистор, причем анод диода является входом преобразователя, а катод является выходом преобразователя, подключен к информационному входу коммутатора и через конденсатор соединен с шиной нулевого потенциала, подключенной через резистор к выходу коммутатора, управляющий вход которого соединен с входом сброса преобразователя.

Описание изобретения к патенту

Изобретение относится к области вычислительной техники и может использоваться в гибридных аналого-цифровых устройствах и системах обработки аналоговых сигналов с целью определения модуля второй ортогональной составляющей по известным модулям вектора и его первой ортогональной составляющей.

Наиболее близким техническим решением к предлагаемому является устройство для определения ортогональной составляющей вектора, содержащее переключатели, элемент сравнения, блок управления, интеграторы, инвертор, сумматор, счетчик и дешифратор.

Недостатками прототипа являются сложность схемы и невысокая точность.

Решаемая изобретением техническая задача упрощение устройства и повышение его точности.

Указанная задача решается благодаря тому, что в устройство для определения ортогональной составляющей вектора, содержащее счетчик, сумматор и компаратор, дополнительно введены фазосдвигающий блок, преобразователь переменного напряжения в постоянное, нуль-орган, элемент И, источник опорного напряжения, аналого-цифровой преобразователь, три цифроаналоговых преобразователя и генератор синусоидального напряжения, выход которого подключен к входу опорного напряжения первого цифроаналогового преобразователя и через фазосдвигающий блок к входу опорного напряжения второго цифроаналогового преобразователя и к входу нуль-органа, инверсный выход которого соединен с первым входом элемента И, выход которого подключен к тактовому входу счетчика, выход которого подключен к цифровым входам второго и третьего цифроаналоговых преобразователей, выход которого является выходом устройства, выход источника опорного напряжения соединен с входами опорного напряжения третьего цифроаналогового преобразователя и аналого-цифрового преобразователя, информационный выход которого является первым входом устройства, а выход подключен к цифровому входу первого цифроаналогового преобразователя, выходы первого и второго цифроаналоговых преобразователей соединены с входами сумматора, выход которого подключен к входу преобразователя переменного напряжения в постоянное, вход сброса которого соединен с входом обнуления счетчика и с пусковым входом устройства, выход преобразователя переменного напряжения в постоянное и второй вход устройства подключены соответственно к инвертирующему и неинвертирующему входам компаратора, выход которого соединен с вторым входом элемента И, преобразователь переменного напряжения в постоянное содержит коммутатор, диод, конденсатор и резистор, причем анод диода является входом преобразователя, а катод, являющийся выходом преобразователя, подключен к информационному входу коммутатора и через конденсатор соединен с шиной нулевого потенциала, подключенной через резистор к выходу коммутатора, управляющий вход которого соединен с входом сброса преобразователя.

На фиг. 1 представлена схема устройства, на фиг. 2 приведена схема преобразователя переменного напряжения в постоянное, на фиг. 3 поясняющая векторная диаграмма напряжений, а на фиг. 4 иллюстрируется работа отдельных элементов устройства и переходные процессы, происходящие в устройстве.

Устройство (фиг. 1) содержит первый вход 1 x устройства, соединенный с информационным входом аналого-цифрового преобразователя (АЦП) 2, информационный выход которого соединен с цифровым входом первого цифроаналогового преобразователя (ЦАП) 3, выход которого соединен с первым входом сумматора 4, а вход опорного напряжения подключен к выходу генератора 5 синусоидального напряжения (ГСН), соединенному с входом фазосдвигающего блока (ФСБ) 6, выход которого соединен с входом опорного напряжения второго ЦАП 7 и входом нуль-органа 8, инверсный выход которого через элемент И 9 соединен с тактовым входом счетчика 10, выход которого соединен с цифровыми входами третьего 11 и второго 7 ЦАП, выход которого соединен с вторым входом сумматора 4, выход которого через преобразователь 12 переменного напряжения в постоянное (ППНП) соединен с инвертирующим входом компаратора 13, неинвертирующий вход которого соединен с вторым входом 14 z устройства, а выход соединен с вторым входом элемента И 9, источник 15 опорного напряжения (ИОН), выход которого соединен с входами опорного напряжения АЦП 2 и третьего ЦАП 11, выход которого является выходом 16 устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884 устройства, пусковой вход 17 устройства соединен с входом обнуления счетчика и входом сброса ППНП 12.

Схема ППНП 12 (фиг. 2) содержит диод 18, анод которого является информационным входом ППНП 12, а катод, являющийся выходом ППНП 12 и через конденсатор 19 связанный с общей шиной устройства, соединен с информационным входом коммутатора 20, управляющий вход которого соединен с входом сброса ППНП 12, а выход через резистор 21 соединен с общей шиной устройства.

Рассмотрим работу устройства.

Для удобства эксплуатации, настройки и проверки в устройстве используются идентичные АЦП 2 и ЦАП 3, 7, 11, имеющие одинаковые рабочий диапазон и ширину младшего значащего разряда устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884U Генератором 5 вырабатываются синусоидальные колебания фиксированной частоты, амплитудное значение которых равняется ширине рабочего диапазона входного напряжения АЦП 2. С помощью ФСБ 6 достигается сдвиг этих колебаний на угол устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884 = -90устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884. ППНП 12 осуществляется преобразование переменного напряжения устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884 в постоянное, равное амплитудному значению входного напряжения, т.е. устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884

К информационному входу АЦП 2 приложено постоянное напряжение x. Код на цифровом информационном выходе АЦП 2 равен

устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884

Код K2 подается на цифровой вход первого ЦАП 3, к входу опорного напряжения которого приложено синусоидальное напряжение с выхода ГСН 5. В результате на выходе первого ЦАП 3 присутствует синусоидальное напряжение (U3 на фиг. 4), действующее значение которого равняется

устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884

Напряжение устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884 подается на первый вход сумматора 4.

Цепь задания напряжения устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884 начинает работать после появления на пусковом входе 17 единичного импульса (в момент времени t 0 на фиг. 4). Этот импульс обнуляет содержимое счетчика 10 и открывает коммутатор 20 ППНП 12 - конденсатор 19 разряжается через резистор 21, и выходное напряжение ППНП 12 спадает до нуля. Поскольку к прямому входу компаратора 13 приложено постоянное положительное напряжение z > 0, а к инверсному нулевое с выхода ППНП 12, то на выходе компаратора 13 появляется единичное напряжение. Это напряжение прикладывается к второму входу элемента И 9, который при этом начинает пропускать импульсы с выхода нуль-органа 8 на вход счетчика 10. На интервале t0 t1 содержимое счетчика 10 остается нулевым и соответственно выходное напряжение ЦАП 7, имитирующего вторую определяемую ортогональную составляющую устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884 вектора, также равно нулю. Следовательно, на интервале t0 t1 выходное напряжение сумматора 4 равняется (см. фиг. 3)

устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884

На интервале t0 t1 конденсатора 19 заряжается через диод 18 в результате кривая напряжения U12 на этом интервале повторяет кривую напряжения U4 (см. фиг. 4).

В момент времени t1 на фиг. 4 синусоида напряжения U6 пересекает ось абсцисс и принимает положительное значение. В результате нуль-орган 8 срабатывает, напряжение на его инверсном выходе спадает от единицы до нуля. По этому перепаду напряжения, повторяющегося также на выходе элемента И 9, срабатывает счетчик 10, содержимое которого становится равным 0001 (при его 4-разрядном исполнении). Код счетчика 10 прикладывается к цифровому входу ЦАП 7, на выходе последнего появляется синусоидальное напряжение U7 (см. фиг. 4), действующее значение которого равно

устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884

Учитывая, что напряжение, приложенное с выхода ФСБ 6 к входу опорного напряжения второго ЦАП 7, отстает от напряжения ГСН 5 на 90o, напряжение устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884 также отстает от напряжения устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884 на 90o (см. фиг. 3 и 4).

Выходное напряжение сумматора 4 с момента времени t1 равно

устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884

Модуль суммарного вектора устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884 равен (см. фиг. 3)

устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884

С помощью ППНП 12 переменное напряжение устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884 преобразуется в постоянное напряжение

устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884

Поскольку амплитудное значение напряжения устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884 больше амплитуды напряжения устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884 (см. фиг. 3), то после момента времени t1 происходит дозарядка конденсатора 19 на незначительную величину до уровня амплитуды напряжения устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884, которое после этого начинает снижаться (см. напряжение U4 на фиг. 4). Однако диод 18 препятствует разряду конденсатора 19 в результате на интервале времени t1 t2 выходное напряжение ППНП 12 поддерживается постоянным и равным устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884 см. формулу (7).

Учитывая, что устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884, на выходе компаратора 13 по-прежнему присутствует единичное напряжение. Поэтому в момент времени t2 на фиг. 4 вновь срабатывает счетчик 10, его выходной код становится равным 0010, а выходное напряжение ЦАП 7 принимает значение

устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884

Соответственно выходное напряжение ППНП 12 становится равным (с некоторой задержкой после момента t2)

устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884

и поддерживается на таком уровне до момента t3.

Наконец, в момент времени t3 содержимое счетчика 10 становится равным 0011, а выходное напряжение ЦАП 7 достигает значения

устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884

Выходное напряжение ППНП 12 достигается значения (в момент времени t4)

устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884

В результате выравнивания входных напряжений компаратор 13 отпускает, его выходное напряжение спадает до нуля (в момент времени t4), закрывая элемент И 9 для прохождения импульсов с выхода нуль-органа 8. В дальнейшем содержимое счетчика 10 не изменяется, а на выходе ЦАП 11 с этого момента присутствует неизменное постоянное напряжение

устройство для определения модуля второй ортогональной   составляющей вектора, патент № 2079884

Преимуществами предлагаемого устройства по сравнению с известными являются более простая схема и более высокая точность. Схема устройства реализуется на интегральных микросхемах.

Класс G06G7/22 для нахождения тригонометрических функций; для преобразования координат; для вычисления с помощью векторных величин

функциональный преобразователь кода угла в синусно-косинусные напряжения -  патент 2310986 (20.11.2007)
функциональный преобразователь кода угла в синусно-косинусные напряжения -  патент 2246175 (10.02.2005)
функциональный преобразователь кода угла в синусно- косинусные напряжения -  патент 2196383 (10.01.2003)
устройство следящего типа для определения модуля второй ортогональной составляющей вектора -  патент 2187839 (20.08.2002)
груботочный функциональный синусный преобразователь -  патент 2107944 (27.03.1998)
устройство для вычисления функций arcsin x, arccos x -  патент 2093887 (20.10.1997)
устройство для преобразования прямоугольных координат в полярные -  патент 2085995 (27.07.1997)
тригонометрический преобразователь -  патент 2085994 (27.07.1997)
арккосинусный преобразователь -  патент 2072555 (27.01.1997)
косинусный преобразователь -  патент 2065203 (10.08.1996)
Наверх