способ изготовления электрода для вольтамперометрических измерений

Классы МПК:G01N27/30 электроды, например испытательные; полуэлементы
Автор(ы):
Патентообладатель(и):Омский государственный университет
Приоритеты:
подача заявки:
1991-11-25
публикация патента:

Изобретение относится к технологии изготовления твердых электродов для электрохимических элементов.Сущность изобретения: способ заключается в обеспечении постоянства площади рабочей поверхности электрода. Для этого на боковой поверхности токопроводящего элемента формируют изолирующую оболочку из полимерного химически инертного материала, например фторопласта или полиэтилена, на которую надевают трубку из термоусадочного материала - полиэтилена ТУР ТУ 7.975 016 80 диаметром на 3 4 мм большим наружного диаметра изолирующей оболочки, и проводят термоусадку при температуре 105 - 110°С в течение 3 5 мин. 2 табл. 2 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4

Формула изобретения

СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДА ДЛЯ ВОЛЬТАМПЕРОМЕТРИЧЕСКИХ ИЗМЕРЕНИЙ, заключающийся в формировании на боковой поверхности токопроводящего элемента изолирующей оболочки из полимерного инертного материала, например фторопласта или полиэтилена, отличающийся тем, что на изолирующую оболочку дополнительно надевают трубку из полимерного термоусадочного материала ТУР ТУ 7.975.016-80 с диаметром, на 3 4 мм большим внешнего диаметра изолирующей оболочки, и проводят термоусадку при 105 110oС в течение 3 5 мин.

Описание изобретения к патенту

Изобретение относится к технологии изготовлении твердых электродов для вольтамперометрических измерений в электрохимии. Обычно твердый электрод для вольтамперометрических измерений представляет собой токопроводящий элемент в виде круглого стержня диаметром 0,8-3 мм (материал электронный проводник: платина, золото, серебро, графит, стеклоуглерод, углеситаллы и др.), вокруг боковой поверхности которого сформирована изолирующая оболочка из полимерного материала. Рабочей поверхностью является торец токопроводящего элемента.

Известен способ изготовления электрода, включающий формирование на цилиндрическом токопроводящем элементе изолирующей оболочки из капрона [1]

Недостатком этого способа является то, что капрон обладает недостаточной химической стойкостью, особенно в кислых средах. В случае контакта с кислой средой возможно образование щели между токопроводящим элементом и капроновой изолирующей оболочкой вследствие разрушения последней, что ведет к изменению площади рабочей поверхности проводящего элемента и возникновению погрешности при полярографических измерениях.

Известен способ изготовления электрода, включающий формирование на цилиндрическом токопроводящем элементе изолирующей фторопластовой оболочки. В центре торца фторопластового цилиндра коаксиально сверлится отверстие диаметром на сотые доли миллиметра меньше, чем диаметр токопроводящего элемента. Затем слегка закругленный кончик токопроводящего элемента вводится в отверстие фторопластовой оболочки и весь токопроводящий элемент с силой впрессовывается во фторопластовую оболочку [2]

Недостатком этого способа изготовления электрода является то, что используемый для изолирующей оболочки химически инертный фторопласт обладает текучестью и со временем образует щель между токопроводящим элементом и изолирующей оболочкой. При этом изменяется площадь рабочей поверхности токопроводящего элемента, что приводит к возникновению погрешности измерений.

Задачей изобретения является обеспечение постоянства рабочей поверхности токопроводящего элемента. При этом сохраняются первоначальные эксплуатационные характеристики электрода и не возникают дополнительные погрешности в процессе измерения.

Для решения этой задачи при изготовлении электрода на боковой поверхности токопроводящего элемента формируют изолирующую оболочку из полимерного химически инертного материала, например фторопласта или полиэтилена, путем впрессовки токопроводящего элемента в отверстие изолирующей оболочки. Затем на изолирующую оболочку дополнительно надевают трубку из термоусадочного материала полиэтилена марки ТУР ТУ 7.975.016-80 с исходным внутренним диаметром, на 3-4 мм большим, чем внешний диаметр изолирующей оболочки и проводят термоусадку в течение 3-5 мин при температуре 105-110оС.

При наиболее часто используемых в вольтамперометрических измерениях размеров токопроводящего элемента (диаметр равен 0,8-3 мм) и изолирующей оболочки (наружный диаметр равен 3-6 мм) трубка из термоусадочного материла диаметром, на 3-4 мм большим наружного диаметра изолирующей оболочки, за указанные 3-5 мин при температуре 105-110оС полностью прогревается и происходит ее термоусадка (уменьшение диаметра) до обеспечения необходимых сжимающих усилий в изолирующей оболочке. При этом обеспечивается постоянство площади рабочей поверхности токопроводящего элемента, предотвращается его отслаивание и в течение длительного времени сохраняются постоянные эксплуатационные характеристики электрода.

На фиг. 1 и 2 изображен электрод, где 1 токопроводящий элемент, 2 фторопластовая или полиэтиленовая изолирующая оболочка, 3 трубка из термоусадочного материала полиэтилена марки ТУР ТУ 7.975.016-80.

Работа электрода поясняется примерами.

П р и м е р 1. Круглый стержень из стеклоуглерода СУ-2000 диаметром 2-3 мм запрессовывают в изолирующую оболочку из фторопласта 4, на фторопластовую оболочку надевают трубку из термоусадочного материала и выдерживают электрод в сушильном шкафу при заданных параметрах режима термоусадки. Образцы электродов испытывали на полярографе ПУ-1 в переменно-токовом режиме при определении ионов кадмия в диапазоне задаваемых концентраций 1-5 мг/л с применением ГСО 3668-87-3671-87, комплект N 8 (кадмий), на фоне 0,1 М ацетатного буфера.

Данные о параметрах электрода, режимах термоусадки и результаты испытаний приведены в табл. 1.

П р и м е р 2. Проволоку из платины диаметром 0,8-1 мм запрессовывают в изолирующую оболочку из полиэтилена низкого давления марки 20106-001, надевают трубку из термоусадочного материала полиэтилена ТУР ТУ 7.975.016-80 с наружным диаметром 6-7 мм и выдерживают в сушильном шкафу с температурой 105-110оС в течение 3-4 мин. Образцы электродов испытывали на полярографе ПУ-1 при вольтамперметрическом определении гидрохинона на 0,5 н.сернокислом фоне.

Результаты испытаний и режимы термообработки приведены в табл. 2.

Данные таблицы подтверждают, что основные эксплуатационные характеристики высота пика и относительное стандартное отклонение остаются в пределах ошибки измерений на протяжении 2,5 лет, что говорит об отсутствии отслаивания изолирующей оболочки и сохранении постоянной площади поверхности токопроводящего элемента.

Класс G01N27/30 электроды, например испытательные; полуэлементы

способ изготовления модифицированного электрода для электрохимического анализа (варианты) -  патент 2507512 (20.02.2014)
мембрана цинкселективного электрода -  патент 2488813 (27.07.2013)
ферментный электрод -  патент 2476869 (27.02.2013)
биосенсорная система, обладающая повышенной стабильностью и гематокритной эффективностью -  патент 2450263 (10.05.2012)
система обнаружения состояния недостаточного заполнения для электрохимического биосенсора -  патент 2441223 (27.01.2012)
электрохимическая система для определения концентрации аналита в пробе, электрохимическая сенсорная полоска и способ повышения точности количественного определения аналита -  патент 2415410 (27.03.2011)
электрохимическая ячейка с обновляемой рабочей поверхностью индикаторного электрода -  патент 2408877 (10.01.2011)
электрохимический детектор для исследования жидкости сложного солевого и химического состава -  патент 2370759 (20.10.2009)
паста для изготовления электродов твердоэлектролитной ячейки -  патент 2343471 (10.01.2009)
двухкамерный медно-сульфатный электрод сравнения неполяризующийся -  патент 2339740 (27.11.2008)
Наверх