способ получения керамических изделий с высокой плотностью из высокотемпературных сверхпроводящих материалов

Классы МПК:C04B35/00 Формованные керамические изделия, характеризуемые их составом; керамические составы; обработка порошков неорганических соединений перед производством керамических изделий
H01L39/12 отличающиеся материалом
Автор(ы):,
Патентообладатель(и):Научно-исследовательский институт материалов электронной техники
Приоритеты:
подача заявки:
1992-10-20
публикация патента:

Использование: в технологии изготовления керамических изделий из высокотемпературных сверхпроводящих материалов. Сущность изобретения: порошок ВТСП смешивают с формовочной присадкой, содержащей 2 4%-ный раствор этилцеллюлозы в органическом растворителе так, что содержание этилцеллюлозы в сухой шихте составляет 0,5 2,5% от массы порошка, проводят сушку шихты, прессование и термообработку. Положительный эффект: керамические изделия на основе соединения YBa3Cu3O7-d имеют плотность 5,6-6,2 г/см3, температуру перехода в сверхпроводящее состояние 92 93 К при ширине перехода 2 4 К и плотности критического тока 400-550 A/см2. 2 табл.
Рисунок 1, Рисунок 2

Формула изобретения

СПОСОБ ПОЛУЧЕНИЯ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ С ВЫСОКОЙ ПЛОТНОСТЬЮ ИЗ ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДЯЩИХ МАТЕРИАЛОВ путем приготовления шихты из порошка ВТСП и формовочной присадки, содержащей органические растворители в виде фторированных или хлорированных углеводородов с содержанием воды менее 0,01 мас. прессования и термообработки, отличающийся тем, что в органический растворитель вводят этилцеллюлозу до получения 2 4%-ного раствора и вводят последний в порошок ВТСП в количестве, обеспечивающем содержание этилцеллюлозы в пересчете на сухое вещество 0,5 2,5% от массы порошка, а перед прессованием шихту высушивают до сыпучего состояния.

Описание изобретения к патенту

Изобретение относится к технологии изготовления керамических изделий из высокотемпературных сверхпроводящих (ВТСП) материалов методами порошковой металлургии.

Известен способ изготовления керамических материалов ВТСП методом горячего прессования для получения изделий с высокой плотностью [1]

Недостатками данного метода являются невозможность изготовления крупногабаритных изделий со сложной геометрической формой, нетехнологичность, плохая воспроизводимость геометрических форм образцов и сверхпроводящих свойств.

Известен способ изготовления керамических изделий из ВТСП [2] включающий приготовление шихты с использованием формовочной присадки, холодное прессование и термообработку, позволяющий получать изделия из сверхпроводящего керамического материала с высокими параметрами сверхпроводящих свойств. В данном способе при изготовлении шихты используются в качестве формовочной присадки органические растворители в виде фторированных или хлорированных углеводородов, таких как трихлорфторэтан, трихлорэтан, трихлорфторэтан+четыреххлористый углерод, взятых в отдельности или в сочетании друг с другом, при содержании воды не более 0,001 мас. Данные вещества при нормальных условиях находятся в жидком агрегатном состоянии. Растворитель вводится в порошок ВТСП-материала, перемешивается до образования густой вязкой массы. Методом мокрого прессования получают пресс-заготовки, которые затем термообрабатываются для изготовления конечного продукта.

Недостатком данного метода является невозможность получения крупногабаритных керамических изделий и изделий сложной формы. Это обусловлено особенностями мокрого прессования. После мокрого прессования получаются пресс-заготовки с низкой (менее 4 г/см3) плотностью из-за значительного остатка жидкости в них. После термообработки пресс-заготовки дают большую усадку, что увеличивает их плотность, но при этом значительно изменяются размеры и форма изделия. Кроме того, при использовании таких формовочных присадок нельзя применять большие давления прессования (более 2 т/см2), что необходимо для получения крупногабаритных изделий с большой плотностью, так как это приводит к расслоению пресс-заготовок за счет неравномерного удаления формовочной присадки. Еще одним недостатком способа является трудоемкость загрузки мокрой массы порошка в пресс-форму, что снижает его технологичность.

Задачей изобретения является получение высокоплотных (плотностью 5,9 6,2 г/см3) крупногабаритных (размером до 200 мм) керамических изделий заданной формы и размеров, повышение технологичности процесса прессования.

Это достигается за счет приготовления шихты с использованием в качестве формовочной присадки 2-4% раствора этилцеллюлозы в органических растворителях, которая вводится в порошок в количестве 0,5-2,5% от массы порошка с последующей сушкой шихты до сыпучести.

В качестве органического растворителя могут быть использованы трихлорэтилен, четыреххлористый углерод и др. Этилцеллюлозу растворяют в органических растворителях, так, чтобы ее содержание в растворе составляло 2-4% Данный раствор вводят в порошок при перемешивании в количестве 0,5-2,5 мас. в пересчете на сухую этилцеллюлозу по отношению к порошку. После выпаривания растворителя получают сухую шихту, содержащую этилцеллюлозу как формующее вещество.

Использование в качестве формовочной присадки этилцеллюлозы обусловлено ее физико-химическими свойствами. А именно химическая инертность к компонентам основного вещества, хорошие связующие свойства, легкость удаления из пресс-заготовок путем низкотемпературной термической возгонки.

Использование этилцеллюлозы позволяет увеличить плотность пресс-заготовок, что в конечном итоге после термообработки увеличивает плотность изделий с сохранением изначальной формы, а за счет использования сыпучей шихты значительно упрощаются операции загрузки и прессования.

Содержание этилцеллюлозы в растворе менее 2% и ее содержание в сухой шихте по отношению к порошку менее 0,5 мас. не позволяет получать изделия с высокой плотностью, так как недостаточное количество связующего вещества приводит к расслоению заготовок при прессовании.

При использовании раствора с содержанием этилцеллюлозы более 4% затрудняется процесс смешивания формовочной присадки с порошком из-за ее вязкости, что приводит к неравномерному распределению формовочной присадки и, как следствие, после термообработки к неравномерной усадке и за счет этого к трещинообразованию.

При содержании этилцеллюлозы в шихте сверх 2,5 мас. происходит разрушение пресс-заготовок при термообработке за счет активного газовыделения разлагающейся этилцеллюлозы.

Предложенный способ был реализован следующим образом. В качестве исходного материала использовали порошки предварительно синтезированных соединений ВТСП YBa2Cu3O7-d Bi2Sr2Ca2Cu3O8 и других с дисперсностью частиц менее 30 мкм. Для приготовления формовочной присадки этилцеллюлозу растворяли в трихлорэтилене так, чтобы ее содержание в растворе составляло 2-4% Формовочную присадку добавляли в порошок и тщательно перемешивали до получения однородной вязкой массы. Количество формовочной присадки, вводимой в порошок определяется процентным содержанием этилцеллюлозы в шихте. В конкретном случае в 500 г порошка добавляли 250 г 2% раствора, что в пересчете на сухую этилцеллюлозу составило 5 г, т.е. 1% к весу порошка. Полученную смесь сушили при температуре 90-100оС до образования сыпучего материала. Полученную таким образом шихту формовали в виде дисков диаметром 160 мм и толщиной 5 мм на прессе с усилием 3-5 т/см3. Пресс-заготовки имели плотность 4,2-5,2 г/см3. Пресс-заготовки спекали при температуре 950оС в течение 10 ч, причем нагрев до температуры 400оС проводили со скоростью 0,5оС/мин для разложения этилцеллюлозы, а от 400оС до 950оС нагрев осуществляли со скоростью 1,5-2оС/мин. Охлаждение проводили со скоростью 1,5оС/мин с выдержкой в течение 20 ч при температуре 450-500оС. Полученные после спекания изделия не имеют трещин, хорошо сохраняют свою изначальную форму и размеры, имеют плотность 5,9-6,0 г/см3. Обоснование предлагаемых параметров приведено в табл.1 и 2.

Полученные образцы керамических изделий с плотностью 5,9-6,2 г/см3 на основе соединения YBa2Cu3O7-d имели температуру перехода в сверхпроводящее состояние 92-93 К при ширине перехода 2-4 К и плотность критического тока 400-550 А/см2.

Класс C04B35/00 Формованные керамические изделия, характеризуемые их составом; керамические составы; обработка порошков неорганических соединений перед производством керамических изделий

нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
композиционный керамический материал -  патент 2529540 (27.09.2014)
деталь малой толщины из термоструктурного композиционного материала и способ ее изготовления -  патент 2529529 (27.09.2014)
керамический материал с низкой температурой обжига -  патент 2527965 (10.09.2014)
огнеупорный блок для стеклоплавильной печи -  патент 2527947 (10.09.2014)
способ получения керамики из оксида иттербия -  патент 2527362 (27.08.2014)
керамический композиционный материал на основе алюмокислородной керамики, структурированной наноструктурами tin -  патент 2526453 (20.08.2014)
спин-стекольный магнитный материал -  патент 2526086 (20.08.2014)
способ получения кварцевой керамики -  патент 2525892 (20.08.2014)
способ изготовления керамических тиглей для алюмотермической выплавки лигатур, содержащих ванадий и/или молибден -  патент 2525890 (20.08.2014)

Класс H01L39/12 отличающиеся материалом

керамический материал -  патент 2515757 (20.05.2014)
способ получения материалов на основе y(вахве1-x)2cu3o7- -  патент 2486161 (27.06.2013)
способ получения высокотемпературного сверхпроводника в системе алюминий - оксид алюминия -  патент 2471269 (27.12.2012)
способ получения высокотемпературного сверхпроводника в системе магний-оксид магния -  патент 2471268 (27.12.2012)
композитная сверхпроводящая лента на основе соединения nb3sn -  патент 2436198 (10.12.2011)
композитная сверхпроводящая лента на основе соединения nb3sn -  патент 2436197 (10.12.2011)
высокотемпературный сверхпроводник на основе силицида лития -  патент 2351677 (10.04.2009)
составной комбинированный магнитный экран -  патент 2306635 (20.09.2007)
высокотемпературный сверхпроводник на основе фосфида лития и способ его изготовления -  патент 2267190 (27.12.2005)
способ формирования пленочного покрытия и устройство для его осуществления -  патент 2211881 (10.09.2003)
Наверх