сейсмоакустический способ контроля качества укладки неоднородных грунтов в насыпь

Классы МПК:G01N33/24 грунтов
E02D1/00 Исследование грунта основания на стройплощадке
Автор(ы):, , ,
Патентообладатель(и):Государственный проектно-изыскательский и научно- исследовательский институт "Гидропроект"
Приоритеты:
подача заявки:
1992-09-29
публикация патента:

Использование: в строительстве, в частности при контроле качества возведения насыпей, плотин, дамб, дорог, искуссвенных оснований, промышленных площадок и др. Сущность изобретения: сейсмоакустический способ контроля качества укладки неоднородных грунтов в насыпь включает предварительное определение плотности грунта с измерением скорости прохождения продольных упругих волн в опытных насыпях и установление корреляционных зависимостей между измеренными характеристиками, измерение скорости прохождения продольных упругих волн в контролируемой насыпи и оценку качества укладки грунта с использованием установленных корреляционных зависимостей. В опытной насыпи одновременно с измерением скорости продольных упругих волн дополнительно измеряют скорость поперечных упругих волн и характеристики затухания упругих волн для грунтов различного гранулометрического состава, устанавливают многопараметровые зависимости между плотностью и грануметрическим составом грунта и всеми измеренными сейсмоакустическими характеристиками грунта. В контролируемой насыми производят измерения указанных сейсмоакустических характеристик и определяют по измеренным данным, используя установленные многопараметровые корреляционные зависимости, плотность уложенного грунта и показатели его гранулометрического состава, по которым производят оценку качества укладки грунта. При этом измерение сейсмоакустических характеристик производят по многоточечной системе на разных базах. 1 з.п. ф-лы, 7 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7

Формула изобретения

1. СЕЙСМОАКУСТИЧЕСКИЙ СПОСОБ КОНТРОЛЯ КАЧЕСТВА УКЛАДКИ НЕОДНОРОДНЫХ ГРУНТОВ В НАСЫПЬ, включающий предварительное определение плотности грунта с измерением скорости прохождения продольных упругих волн в опытных насыпях и установление корреляционных зависимостей между измеренными характеристиками, измерение скорости прохождения продольных упругих волн в контролируемой насыпи и оценку качества укладки грунта с использованием установленных корреляционных зависимостей, отличающийся тем, что дополнительно в опытной насыпи одновременно с измерением скорости продольных упругих волн измеряют скорость поперечных упругих волн и характеристики затухания упругих волн для грунтов различного грансостава, устанавливают многопараметровые зависимости между плотностью и грансоставом грунта и всеми измеренными сейсмоакустическими характеристиками грунта, а в контролируемой насыпи производят измерения указанных сейсмоакустических характеристик и определяют по измеренным данным, используя установленные многопараметровые корреляционные зависимости, плотность уложенного грунта и показатели его грансостава, по которым производят оценку качества укладки грунта.

2. Способ по п.1, отличающийся тем, что измерение сейсмоакустических характеристик производят по многоточечной системе на разных базах.

Описание изобретения к патенту

Изобретение относится к строительству, в частности к контролю качества возведения насыпей: плотин, дамб, дорог, искусственных оснований, промышленных площадок и др.

Известны радиоизотопные методы для оценки физических свойств и контроля качества укладки грунтов в насыпные сооружения, заключающиеся в определении плотности сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595 и влажности W и вычислении на их основе плотности сухого грунта, по величине которого осуществляют контроль качества укладки грунта [1,2] Однако в случае изучения неоднородных сред, каковыми являются многие разнозернистые грунты, эти методы дают большой разброс данных, так как объем, охватываемый единичным измерением, относительно мал по сравнению с неоднородностями.

Наиболее близким по технической сущности к предлагаемому является сейсмоакустический способ контроля качества укладки неоднородных грунтов в насыпь, включающий предварительное определение плотности грунта с измерением скорости прохождения продольных упругих волн в опытных насыпях и установление корреляционных зависимостей между измеренными характеристиками, измерение скорости прохождения продольных упругих волн в контролируемой насыпи и оценку качества укладки грунта с использованием установленных корреляционных зависимостей [3]

Однако этот способ позволяет судить лишь о плотности грунта, в то время как качество возведения насыпи из крупнообломочных грунтов зависит также и от соотношения крупных фракций и мелкозема в грунте, т.е. способ имеет недостаточную информативность. Например, даже при высокой плотности грунта мелкозем в нем может быть не уплотнен из-за недостаточного его содержания. Поэтому наряду с определением плотности грунта сейсмоакустическим методом приходится отбирать пробу на гранулометрический состав, включающий выемку грунта, высушивание и рассев по фракциям, взвешивание и определение содержания мелкозема. Все это повышает трудоемкость геотехнического контроля.

Задачей изобретения является повышение точности определения параметров плотности и гранулометрического состава, повышение информативности за счет увеличения числа определяемых фракций практически до обычного в геотехнике определения гранулометрического состава по 5-6 фракциям.

Для этого в сейсмоакустическом способе контроля качества укладки неоднородных грунтов в насыпь дополнительно в опытной насыпи одновременно с измерением скорости продольных упругих волн измеряют скорость поперечных упругих волн и характеристики затухания упругих волн для грунтов различного гранулометрического состава, устанавливают многопараметровые зависимости между плотностью и гранулометрическим составом грунта и всеми измеренными сейсмоакустическими характеристиками грунта, а в контролируемой насыпи производят измерения указанных сейсмоакустических характеристик и определяют по измеренным данным, используя установленные многопараметровые корреляционные зависимости, плотность уложенного грунта и показатели его гранулометрического состава, по которым производят оценку качества укладки грунта, причем измерение сейсмоакустических характеристик производят по многоточечной системе на разных базах.

Физической основой данного сейсмоакустического способа контроля качества укладки грунта является связь между плотностью грунта, а также его гранулометрического состава с параметрами упругих волн, распространяющихся в грунте. Как правило, с увеличением плотности грунта сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595d скорости продольных Vp и поперечных Vs волн возрастают, амплитуды Ари Аs увеличиваются, а затухание волн Lp и Ls уменьшается, что связано с повышением "компактности" среды.

На фиг. 1 изображена схема определения параметров продольных Р и поперечных S упругих волн (времени прихода tp, ts и амплитуд Ар и Аs) по зарегистрированным сейсмограммам; на фиг. 2 схема полевых сейсмоакустических наблюдений; на фиг. 3 схема геофизических профилей I-IV в точке опробования; на фиг. 4 пример годографов продольных и поперечных волн со схемой определения скоростей V1-V8 на разных базах Х; на фиг. 5 пример сопоставления кривых гранулометрического состава грунта, полученных сейсмоакустическим и геотехническим способами; на фиг. 6 и 7 графики сопоставления значений гранулометрического состава функции d(5), плотности сухого грунта сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595 определенных геотехническим способом (d(5)гТ, сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595 d (5)гТ), и вычисленных значений по геофизическим характеристикам (d(5)гф, сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595 d(5)гф) соответственно.

Способ осуществляют следующим образом.

Представленная схема наблюдений при проведении контроля сейсмоакустическим способом используется как на опытном участке для установления тарировочных корреляционных связей, так и на контролируемой насыпи. На поверхности уплотненного слоя грунта 1 (фиг.2) устанавливают сейсмоприемники 2 вдоль четырех взаимно перпендикулярных профилей с шагом 0,25 м (фиг.3). Удары для возбуждения упругих волн производят молотком 3 вблизи крайних сейсмоприемников 2 (0,1 м). Количество сейсмоприемников 2 на этих минипрофилях определяется их длиной, которая выбирается таким образом, чтобы контролируемый объем грунта был сопоставим с объемом собираемой пробы на опытном участке. С помощью ударов молотка 3 по поверхности грунта 1 в пунктах 4 удара возбуждаются импульсы упругих колебаний, которые распространяются в грунте, достигают сейсмоприемников 2 и регистрируются с помощью сейсмостанции или специальной аппаратуры 5. Время прихода сейсмоакустического импульса к сейсмоприемникам t изображается на графике (фиг.4) в виде функции (годографа) t f(X), где Х расстояние от пункта удара. Эти графики используются для определения средних скоростей прохождения продольных волн по линиям профилей. Средние скорости определяются по единичным измерениям скорости на отрезках профиля разной длины (от 0,25 м до полной длины профиля). Показатели эффективного затухания упругих волн Lpи Ls определяются по амплитудным графикам, которые представляют собой графические изображения известного выражения А Ао е-Lx, где Ао начальное значение амплитуды (1 канал); е основание натурального логарифма. При этом по оси у откладываются натуральные логарифмы измеренных на разных базах амплитуд А, а по оси х расстояние. Точки на графике осредняются прямой линией, наклон которой определяет эффективное затухание

L сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595 + LnAo.

С помощью специальной аппаратуры возможно автоматическое измерение указанных параметров.

Полученные значения средних скоростей Yp, Ys на разных базах, а также показатели их затухания с помощью многомерного статического анализа увязываются с известными показателями плотности грунта сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595d и процентным содержанием фракции. Получаемые корреляционные уравнения используются для контроля качества укладки грунта с неизвестными значениями плотности и гранулометрического состава. При использовании методов корреляционно-регрессивного анализа удобно использоваться полиноминальными моделями, которые могут быть линейными и нелинейными. Поскольку линейные модели являются более простыми и удобными, то они и применяются в большинстве случаев. Линейная модель записывается в общем виде

V сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595оZo + сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 20385951Z1 + сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 20385952Z2 + + сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595рZp + сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595, где Zo фактическая переменная, вводимая для оценки свободного члена сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595о, всегда равная единице;

Zi некоторые функции измеренных геофизических параметров

Yp, Ys, Lp, Ls);

сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595i неизвестные параметры, подлежащие определению;

сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595 некоторый остаток, связанный с влиянием неучтенных факторов и случайными ошибками в определении величины.

П р и м е р. При возведении плотины на г/у Тишрин используется грунт мелоподобных пород, состоящий из обломков различной крупности (до 200 мм) и мелкозема (5 мм). Средняя плотность грунтовой смеси сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595d 1,64 т/м.

По техническим условиям возведения плотины содержание мелкозема в грунте должно быть не менее 40% Плотина возводится слоями по 0,3 м с уплотнением виброкатками. На опытном участке плотины была выполнена серия совместных геотехнических и сейсмоакустических работ для получения тарировочных связей. При этом плотность грунта определялась методом шурфа лунки, а гранулометрический состав методом рассева по фракциям. Скорости Yp и Ys и показатели эффективного затухания и упругих волн определялись точно на той же площадке, из которой в последующем отбиралась проба методом шурфа лунки.

Размеры шурфа лунки 0,5 х 0,5 х 0,3 м, длина геофизического профиля, расположенного по диагонали шурфа, 1,0 м. Упругий импульс возбуждался ударом молотка по специальной подставке, установленной на поверхности грунта. Прием упругих колебаний осуществлялся с помощью сейсмоприемников, установленных на интервале опробования, и портативной двухканальной сейсмоакустической установки. В результате проведенных по предлагаемой методике опытных работ были установлены в рамках линейной м одели следующие тарировочные зависимости:

сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595d 1,033 0,28 х 10-3 Vp0,25 + 0,53 x 10-3 Vp1 + 3,75 x 10-3Lp2 + 6,92 x 10-3 d (5);

d(5) 53,5 + 23,18 x 10-3 Vp1 19,34 x (Ls/Lp)2 + 0,119 x (Ls x Lp)2 7,71 x Lp;

d(5-20) 40,93-0,018 x Vp1 9,83 x 1/Ls 10,79 Ls + 0,044 x Vp1 /Lp + 1,7 Ls x Lp 0,538 x Vs1

d(40-80) 2,29 7,79 x 10-3Vp1 8,85 x Ls/Lp 5,16 Ls x Lp + 21,19 x Ls + 1,27 x Lp2, где Vp025 Vp1 скорости продольных волн на базах 0,25 и 1,0 м;

Vs025 Vs1 скорости поперечных волн на базах 0,25 и 1,0 м;

Vp025.1 Vs025.1 отношение скоростей продольных и поперечных волн, измеренных на базе 0,25 м, к скоростям, измеренным на базе 1 м, соответственно;

Lp эффективное затухание продольных волн;

Ls эффективное затухание поперечных волн;

сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595d плотность скелета сухого грунта;

d(5) процентное содержание частиц диаметром 5 мм (мелкозем);

d(5-20) процентное содержание частиц диаметром 5-20 мм;

d(20-40) процентное содержание частиц диаметром 20-40 мм;

d(40-80) процентное содержание частиц диаметром 40-80 мм.

Все эти уравнения были получены по 41-му независимому совместному испытанию (геофизика и геотехника) и характеризуются высокими коэффициентами множественной корреляции: R сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595 d(5)=0,87, R сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595 d(5-20) 0,84, R сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595d(40) 0,86, R сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595 d(80) 0,83, R сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595d 0,88. Это позволяет с высокой точностью определять плотность скелета сухого грунта и процентное содержание различных фракций. Так, для сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595 d стандартная ошибка составляет 0,04 т/м, а для фракций d(5), d(40), d(80) не превышает 3%

При контрольном измерении на точке опробования были измерены следующие геофизические параметры: Vp025 920 м/с Vp1 873 м/c Vs025 333 м/c Vs1 292 м/c Lp 1,57 Ls 0,75 Vp025.1920/873 1,061 Vs025.1333/292 1,14

Подставляя эти величины в приведенные уравнения, получим d(5) 57% d(5-20) 30% d(20-40) 10,5% d(40-80) 4% d=1,64 т/м. На этой же точке опробования после проведения сейсмоакустических наблюдений была отобрана проба методом лунки, по которой были определены гранулометрический состав и плотность геотехническим способом.

Результаты определений следующие:

сейсмоакустический способ контроля качества укладки   неоднородных грунтов в насыпь, патент № 2038595 d=1,64 т/м, d(5)=55,3% d(40-80)=5,4% d(5-20)=28,7% d(20-40)=10,6%

График сопоставления кривых грансостава, полученных сейсмоакустическим и геотехническим способами, приведенный на фиг. 5, показывает хорошее совпадение геофизических и геотехнических результатов.

На фиг. 6 и 7 показаны графики сопоставления данных, определенных геотехническим способом и вычисленных по корреляционным уравнениям для плотности скелета сухого грунта и процентного содержания мелкозема d(5).

Класс G01N33/24 грунтов

способ определения палеотемператур катагенеза безвитринитовых отложений по оптическим характеристикам микрофитофоссилий -  патент 2529650 (27.09.2014)
способ оценки удельной активности цезия-137 в растительных ресурсах леса -  патент 2528910 (20.09.2014)
способ отбора проб для анализа почвы луга -  патент 2522989 (20.07.2014)
реагентная индикаторная трубка на основе хромогенных дисперсных кремнеземов -  патент 2521368 (27.06.2014)
способ оценки степени деградации техноландшафта при химическом загрязнении -  патент 2521362 (27.06.2014)
способ моделирования горизонтального термоэрозионного размыва мерзлых грунтов -  патент 2520590 (27.06.2014)
портативная лабораторно-полевая дождевальная установка -  патент 2519789 (20.06.2014)
способ определения показателей трансформируемого и инертного органического углерода в почвах -  патент 2519149 (10.06.2014)
способ экспресс-определения загрязнения участков почв и подземных вод нефтью и нефтепродуктами -  патент 2519079 (10.06.2014)
устройство для измерения динамического действия дождя на почву -  патент 2518744 (10.06.2014)

Класс E02D1/00 Исследование грунта основания на стройплощадке

устройство для измерения деформаций грунтов -  патент 2529214 (27.09.2014)
устройство для отбора почвы -  патент 2525080 (10.08.2014)
способ моделирования горизонтального термоэрозионного размыва мерзлых грунтов -  патент 2520590 (27.06.2014)
устройство для комплексного определения физических и механических свойств грунтов в полевых условиях -  патент 2510440 (27.03.2014)
способ определения деформации горных пород в зонах, недоступных для прямых измерений -  патент 2509889 (20.03.2014)
способ динамического зондирования грунтов и устройство для его осуществления -  патент 2507341 (20.02.2014)
комплект устройств для отбора вертикального монолита почвогрунтов -  патент 2505792 (27.01.2014)
способ оценки содержания крупнообломочных включений на характеристики сжимаемости смесей глинистых грунтов -  патент 2503776 (10.01.2014)
устройство для измерения скорости и направления движения грунта относительно подземного трубопровода -  патент 2498015 (10.11.2013)
способ определения морозного пучения грунта при промерзании сезоннопротаивающего слоя -  патент 2498014 (10.11.2013)
Наверх