установка для радиационного нагрева

Классы МПК:H05B3/06 нагревательные элементы, конструктивно сопряженные с соединительными деталями или с держателями 
Автор(ы):, , ,
Патентообладатель(и):Центральный аэрогидродинамический институт им.проф.Н.Е.Жуковского
Приоритеты:
подача заявки:
1982-01-11
публикация патента:

Область использования: радиационный нагрев авиационных конструкций, испытуемых на прочность. Сущность: установка радиационного нагрева с нагревательными блоками. Блоки содержат излучатели и экраны. Перед блоками установлены дополнительные излучатели, закрепленные на жестких токоподводах и снабженные индивидуальным источником регулируемого напряжения. 3 ил.
Рисунок 1, Рисунок 2, Рисунок 3

Формула изобретения

УСТАНОВКА ДЛЯ РАДИАЦИОННОГО НАГРЕВА, содержащая корпус, в котором на консолях шарнирно установлены шасси с закрепленными на них нагревательными блоками, выполненными в виде теплоизоляционных экранов и излучателей, каждый из которых подсоединен к автономному источнику регулируемого напряжения, отличающаяся тем, что, с целью расширения температурного диапазона, установка снабжена дополнительными излучателями, установленными перед нагревательными блоками на жестких токоподводах, проходящих сквозь отверстия в теплоизоляционных экранах и соединенных с шинами, прикрепленными к корпусу с возможностью горизонтально-вертикального перемещения, причем каждый из дополнительных излучателей снабжен индивидуальным источником регулируемого напряжения.

Описание изобретения к патенту

Изобретение относится к испытаниям конструкций на прочность, а именно к устройствам, предназначенным для исследования прочности конструкций при повышенных температурах.

Известен стенд для испытания на прочность с нагревом цилиндрических конструкций, представляющий собой корпус в виде рамы из стальных профилей, к которому прикреплены нагревательные модули или блоки. Каждый нагревательный блок состоит из шасси, служащего экраном (рефлектором), направляющим основную часть теплового потока, создаваемого излучателями, на испытуемую конструкцию, излучателей и их токоподводов, шин, электроизолированных от шасси [1]

Наиболее близкой к изобретению по назначению и технической сущности является установка для радиационного нагрева обтекателя передней кромки крыла воздушно-космического самолета "Спейс Шаттл" [2] состоящая из корпуса, нагревательных блоков, содержащих пластинчатые графитовые излучатели, токоподводы, экран, шасси, к которому крепится экран и при помощи электроизоляторов токоподводы; источников регулируемого электрического напряжения для питания нагревательных блоков.

Вся нагревательная установка вместе с испытуемой конструкцией размещается в вакуумной камере. Установка создана для нагрева конструкций до 1550-1600 К

На носовой части "Спейс Шаттл", испытанной на подобной установке, максимальная температура близка к 1650 К. При этом максимальная требуемая температура излучателей должна быть на уровне 2000-2050 К. Эта величина фактически совпадает с температурным пределом работоспособности излучателей.

Установка-прототип не может быть использована в тех случаях, когда хотя бы на небольшом участке испытуемую конструкцию необходимо нагреть до температуры выше 1600-1650 К, поскольку в этом случае указанный температурный предел будет превышен.

По этой причине на подобной установке невозможно провести испытания на прочность конструкции изделия "Бор", максимальные температуры на его поверхности достигают 1800-1900 К и их воспроизведение потребовало бы превышения предела работоспособности имеющихся в распоряжении нагревательных блоков градусов на 200-300.

При использовании нагревательных блоков с графитовыми излучателями этот предел, как правило, обусловлен термостойкостью экрана, который из соображений надежности, удобства в эксплуатации и взрывобезопасности выполняется неохлаж- даемым.

Целью изобретения является максимальное приближение условий испытания авиационных конструкций к натурным путем воспроизведения температуры их наиболее теплонапряженных участков, находящейся выше уровня температуры, допускаемого работоспособностью нагревательных блоков.

Это достигается тем, что установка снабжена дополнительными излучателями с токоподводами, установленными перед нагревательными блоками на жестких токоподводах, проходящих сквозь отверстия в теплоизоляционных экранах и соединенных с шинами, прикрепленными к корпусу с возможностью горизонтально-вертикального перемещения, причем каждый из дополнительных излучателей снабжен индивидуальным источником регулируемого напряжения.

На фиг.1 представлена схема установки радиационного нагрева для испытаний на прочность носовой части изделия "Бор"; на фиг.2 конструкция нагревательного блока; на фиг.3 узел крепления дополнительных излучателей к корпусу.

Установка (фиг.1) содержит корпус 1, источники 2 регулируемого электрического напряжения, нагревательные блоки 3, установленные на корпусе, направленные на испытуемую конструкцию 4 и содержащие (фиг.2) шасси 5, экраны 6 и графитовые излучатели 7 с токоподводами 8, консольно прикрепленными к шасси 5 на изоляторах 9.

Токоподводы 8 соединены с источниками 2 регулируемого электрического напряжения. Экраны 6 образуют оболочку 10 для защиты корпуса, шасси 5, изоляторов 9 и другой арматуры от воздействия теплового излучения. Между нагревательными блоками 3 и испытуемой конструкцией 4 перед наиболее теплонапряженным участком 11 установлены дополнительные графитовые пластинчатые излучатели 12 с графитовыми токоподводами 13.

Каждый токоподвод снабжен (фиг.3) медной шиной 14, двумя стальными пластинами 15 и 16 с продольными прорезями 17 и 18 на одном из их концов, а также кронштейном 19 для прикрепления токоподводов 13 к корпусу 1. Пластина 16 при помощи болтов 20, проходящих в ее прорезь 18, соединена с кронштейном 19 так, что продольная ось прорези 18 перпендикулярна продольной оси токоподвода 13. Пластина 15 при помощи болтов 21, проходящих в ее прорезь 17, соединена с пластиной 16 так, что ось прорези 17 параллельна продольной оси токоподвода 13, а другой конец пластины 15 при помощи болтов 22 и стеатитовых электроизоляторов 23 жестко соединен с шиной 14, привинченной стальными винтами 24 к токоподводу 13. Токоподводы проходят сквозь отверстия 25 в оболочке 10. Шины 14 соединены при помощи токопроводов 26 с дополнительным источником 27 регулируемого электрического напряжения.

Предлагаемая установка радиационного нагрева работает следующим образом (фиг.1, 3):

Нагреваемая конструкция 4 устанавливается на специальной платформе 28, прикрепленной к корпусу 1. Нагревательные блоки 3 соединены в автономные зоны нагрева, подключенные к соответствующим источникам 2 регулируемого электрического напряжения. Дополнительные излучатели 12 также представляют собой автономную зону нагрева и подключены через токоподводы 13, шины 14 и токопроводы с гибкими участками к дополнительному источнику 27 электрического напряжения.

Взаимное расположение нагревательных блоков 3, нагреваемой конструкции 4 и излучателей 12 определяется на основании расчетов теплообмена между элементами установки и результатов методических испытаний, проводимых на низких уровнях температуры на методическом образце испытуемой конструкции. При этом положение дополнительных излучателей 12 относительно нагревательных блоков 3 и испытуемой конструкции корректируется между этапами методических испытаний и после них, для чего, ослабив гайки болтов 20 и 21, дополнительные излучатели 12 вместе с токоподводами 13 и шинами 14 перемещают в пространстве в пределах, обусловленных длиной прорезей 17 и 18 в пластинах 15 и 16.

Для того, чтобы при перемещении дополнительные излучатели не разрушались, к токоподводам на время перестановки прикрепляется соответствующее монтажное шасси 29 (см. фиг.3). На время испытаний установка на тележке помещается в вакуумную камеру: включаются система вакуумирования и система электропитания, осуществляется автоматическое изменение давления газовой среды в камере.

На излучатели 7 нагревательных блоков 3 и на дополнительные излучатели 12 соответственно от регулируемых источников 2 и 27 подается электрическое напряжение, автоматически регулируемое в каждой зоне нагрева таким образом, чтобы с требуемой точностью обеспечить воспроизведение заданной программы нагрева испытуемой конструкции 4.

При этом на дополнительные излучатели 12 подается напряжение, обеспечивающее их разогрев до температуры более высокой, чем температура излучателей 7 нагревательных блоков 3. Поскольку к тому же дополнительные излучатели 12 расположены к нагреваемой конструкции 4 (к ее участку 11) ближе, чем излучатели 7, на участке 11 температура конструкции 4 будет выше, чем на остальных ее участках, причем эта температура может быть доведена до уровня, не достижимого при нагреве конструкции при помощи только нагревательных блоков 3. Ограничение заключено в том, что рабочая температура волокнистой керамики ШВП-350, из которой изготовлены экраны 6 нагревательных блоков 3, ограничена величиной 1473 К (ТУ 36-2345-80).

Так как площадь поверхности дополнительных излучателей 12 более чем на порядок меньше площади поверхности излучателей 7 и тех участков экранов 6, которые не закрыты излучателями 7 от излучения дополнительных излучателей 12, то тепловой поток, излучаемый последними в сторону нагревательных блоков 3, как бы "размазывается" по поверхности их элементов. Некоторое повышение температуры излучателей 7, которое могло бы проявиться в результате подогрева со стороны дополнительных излучателей 12, тут же компенсируется уменьшением электрического напряжения, подаваемого на нагревательные блоки 3. Эта операция осуществляется системой автоматического управления нагревом. Благодаря этому температура экранов 6 нагревательных блоков 3 не выходит из пределов, допустимых для экрана из материала ШВП-350.

Класс H05B3/06 нагревательные элементы, конструктивно сопряженные с соединительными деталями или с держателями 

система, изделие и способ для крепления контактной трубки к валу установки для непрерывного отжига проволоки с контактным нагревом -  патент 2510161 (20.03.2014)
устройство оттаивания и низкотемпературного подогрева сыпучих материалов -  патент 2358414 (10.06.2009)
позисторный корпусный нагреватель -  патент 2261537 (27.09.2005)
устройство поддержания температуры объекта для сканирующих зондовых микроскопов -  патент 2244948 (20.01.2005)
устройство нагрева для сканирующих зондовых микроскопов -  патент 2218562 (10.12.2003)
устройство нагрева для сканирующих зондовых микроскопов -  патент 2169440 (20.06.2001)
токоподвод к графитовому нагревателю для высокотемпературных электропечей -  патент 2147798 (20.04.2000)
электронагревательное устройство -  патент 2133869 (27.07.1999)
устройство для распределения тепла -  патент 2121244 (27.10.1998)
электронагревательный элемент -  патент 2091985 (27.09.1997)
Наверх