ленточный сердечник из магнитного сплава на основе железа

Классы МПК:H01F3/04 изготовленные из полос или лент 
C22C38/16 содержащие медь
Автор(ы):, ,
Патентообладатель(и):Научно-производственное предприятие "Гамма"
Приоритеты:
подача заявки:
1992-12-07
публикация патента:

Изобретение относится к металлургии, а именно к магнитным сплавам на основе железа, предназначенным для изготовления ленточных сердечников, которые в свою очередь используют в трансформаторах тока, силовых трансформаторах источников вторичного питания и высокочастотных трансформаторах различного назначения. По данному изобретению ленточный сердечник из магнитного сплава на основе железа содержит Cu, Mo, Nb, Si, B при следующем соотношении компонентов, ат. %: медь 0,5 - 2,0; молибден 0,5 - 5,0; ниобий 0,001 - 4,5; кремний 5 - 18, бор 4 - 12; железо остальное, причем сумма компонентов молибден и ниобий составляет 2 - 5 ат.%. Предусмотрены варианты сердечников с высокой индукцией насыщения и низкой чувствительностью к внешним механическим напряжениям, содержащих в структуре не менее чем на 50% кристаллы размером менее 100 нм, а также покрытых пленкой из оксида молибдена толщиной не менее 5 нм. 8 з.п. ф-лы, 3 табл.
Рисунок 1, Рисунок 2

Формула изобретения

1. ЛЕНТОЧНЫЙ СЕРДЕЧНИК ИЗ МАГНИТНОГО СПЛАВА НА ОСНОВЕ ЖЕЛЕЗА, содержащего медь, молибден, ниобий, кремний, бор, отличающийся тем, что сплав содержит компоненты при следующем соотношении, ат.

Медь 0,5 2,0

Молибден 0,5 5,0

Ниобий 0,001 4,5

Кремний 5 18

Бор 4 12

Железо Остальное

причем сумма компонентов молибден и ниобий составляет 2 5 ат.

2. Сердечник по п.1, отличающийся тем, что структура сплава не менее чем на 50% состоит из кристаллов размером менее 100 нм.

3. Сердечник по п.1, отличающийся тем, что на поверхности ленты магнитного сплава имеется пленка оксида молибдена толщиной не менее 5 нм.

4. Сердечник по п.1, отличающийся тем, что отношение молибдена к сумме компонентов молибден и ниобий составляет 0,1 1,0.

5. Сердечник по п.1, отличающийся тем, что отношение молибдена к сумме компонентов молибден и ниобий составляет 0,5.

6. Сердечник по п.1, отличающийся тем, что содержание кремния составляет 12 15 ат. а содержание бора 8 10 ат%

7. Сердечник по п.6, отличающийся тем, что содержание молибдена и ниобия составляет 3,4 ат%

8. Сердечник по п.1, отличающийся тем, что содержание кремния составляет 14 17 ат% а бора 6 8 ат.

9. Сердечник по п.1, отличающийся тем, что содержание кремния составляет 7 11 ат% а бора 9 11 ат%

Описание изобретения к патенту

Изобретение относится к металлургии, а именно к магнитным сплавам на основе железа, предназначенным для изготовления ленточных сердечников, которые в свою очередь используют в трансформаторах тока, силовых трансформаторах источников вторичного питания и высокочастотных трансформаторах различного назначения.

Известны ленточные сердечники из электротехнической стали и сплавов типа 45НП с начальной магнитной проницаемостью ленточный сердечник из магнитного сплава на основе железа, патент № 2033649o до 4000 [1]

В ленточном магнитном сердечнике из аморфных магнитных сплавов на основе железа [2] начальная магнитная проницаемость достигает 10000.

В качестве прототипа выбран ленточный сердечник [3] изготовленный из магнитного сплава на основе железа с высокой магнитной проницаемостью. Состав сплава выражается формулой (Fe1-aMа)100-x-4-z-bRbCuxSi4Bz, где М Со и/или Ni: R по крайней мере один компонент из группы Nb, W, Ta, Zr, Hf, Ti, Мo. Численные значения индексов находятся в интервалах а=0-0,5; b=0,1-30; x= 0,1-3; y= 0-30; z= 0-30; (Y+Z)=5-30. Сердечники из этого сплава имеют наилучшие магнитные свойства после отжига в вакууме или восстановительной атмосфере. Поэтому для отжига сердечников необходимо специальное оборудование. Технические трудности возникают также при термомагнитной обработке сердечников. С другой стороны наиболее простым и дешевым способом является отжиг на воздухе.

Поэтому целью данного изобретения является ленточный сердечник из магнитного сплава на основе железа, в котором высокая магнитная проницаемость достигается после отжига на воздухе.

Сердечники выдерживали при температуре отжига в течение 10 мин. Скорость нагрева и охлаждения составляла 20оС/мин. В результате отжига формировалась нанокристаллическая структура магнитного сплава со средним размером зерна 20-50 нм. Сердечник из магнитного сплава, содержащего ниобий, после отжига на воздухе имеет начальную магнитную проницаемость не более 50000. Низкая величина магнитной проницаемости связана с внутренним окислением магнитного сплава. Оксидные подповерхностные включения, обладая низким коэффициентом термического расширения, создают в материале сжимающие напряжения и ухудшают магнитные свойства сердечника.

Полная замена ниобия молибденом позволяет повысить магнитную проницаемость до 100000 за счет образования на поверхности ленты пленки оксида молибдена, которая препятствует внутреннему окислению при отжиге на воздухе. Оксидная пленка формируется как в процессе быстрой закалки расплава, так и при последующем отжиге сердечников. Толщина пленки составляет 5-10 нм. Высокая магнитная проницаемость сердечников из сплава с х=1 получается в узком интервале температуры отжига, поскольку молибден менее эффективен для сдерживания роста зерен, чем ниобий. Температурный интервал расширяется за счет частичной замены молибдена ниобием. Оптимальным по уровню магнитных свойств и стабильности их получения является отношение молибдена к сумме молибдена и ниобия, равное х=0,5.

Таким образом, предлагается ленточный сердечник из магнитного сплава на основе железа, содержащего медь, молибден, ниобий, кремний, бор, отличающийся тем, что сплав содержит компоненты при следующем соотношении, ат. медь 0,5-2,0; молибден 0,5-5,0; ниобий 0,001-4,5; кремний 5-18; бор 4-12; железо остальное, причем сумма компонентов молибден и ниобий составляет 2-5 ат.

Для получения наиболее высокой магнитной проницаемости предпочтительно, чтобы содержание кремния находилось в интервале 12-15 ат. бора 8-10 ат. а сумма ниобия и молибдена 3-4 ат.

Для получения сердечников с низкой чувствительностью к механическим воздействиям предпочтительно, чтобы содержание кремния находилось в интервале 14-17 ат. а бора 6-8 ат.

Для получения сердечников с высокой индукцией насыщения предпочтительно, чтобы содержание кремния находилось в интервале 7-11 ат. а бора 9-11 ат.

П р и м е р ы. Сердечники из магнитного сплава диаметром 32х20 мм и высотой 10 мм отжигали на воздухе при 540оС, 1 ч. Результаты испытания сердечников из сплава Fe73,5-6Cu1(MoxNb1-x)6Si13,5B9 представлены в табл.1. В ней же приведены данные отжига тех же образцов в вакууме (р<0,1 Н/м2).

Из табл. 1 следует, что введение молибдена в магнитный сплав позволяет получить высокую магнитную проницаемость после отжига на воздухе. С другой стороны, избыточное содержание молибдена приводит к резкому ухудшению магнитных свойств после отжига в вакууме. Оптимальным для отжига на воздухе является отношение содержания молибдена в сумме молибден и ниобий 0,5.

В табл.2 приведены результаты испытания сердечников из сплава Fe96-4-zCu1Mo1,5Nb1,5Si4Bz.

Из табл. 2 следует, что для получения сеpдечников с высокой индукцией насыщения необходимо снижать содержание кремния и бора в сплаве. Причем с увеличением индукции В800 снижается начальная магнитная проницаемость и увеличивается коэрцитивная сила.

В табл.3 приведены результаты испытания сердечников сплава Fe96-4-zCu1Mo1,5Nb1,5SiyBz после отжига и после пропитки водным раствором натриевого жидкого стекла и сушки при 100оС в течение 2 ч. Сушка неорганического клея создает сжимающие напряжения в сердечнике, которые снижают магнитную проницаемость. Из табл. 3 следует, что с увеличением отношения кремния к бору чувствительность магнитной проницаемости сердечников к сжимающим напряжениям снижается. При этом снижение чувствительности магнитных свойств сердечника к сжимающим напряжениям при одновременном сохранении высокого уровня этих свойств достигается при содержании кремния в интервале 14-17 ат. а бора 6-8 ат.

Класс H01F3/04 изготовленные из полос или лент 

лента из ферромагнитного аморфного сплава с уменьшенным количеством поверхностных дефектов и ее применение -  патент 2528623 (20.09.2014)
жесткий ленточный магнитопровод для трансформатора и способ его изготовления -  патент 2516438 (20.05.2014)
плоская многофазная магнитная система -  патент 2444801 (10.03.2012)
пространственный симметричный магнитопровод -  патент 2380780 (27.01.2010)
намотанный сердечник трансформатора, способ и устройство для его изготовления -  патент 2241271 (27.11.2004)
трехфазный трансформатор -  патент 2237306 (27.09.2004)
магнитопровод -  патент 2190275 (27.09.2002)
магнитопровод -  патент 2149473 (20.05.2000)
магнитный сплав и магнитопровод из этого сплава -  патент 2117714 (20.08.1998)
магнитопровод -  патент 2115968 (20.07.1998)

Класс C22C38/16 содержащие медь

способ производства высокопроницаемой анизотропной электротехнической стали -  патент 2516323 (20.05.2014)
способ получения металлоизделия с заданным структурным состоянием -  патент 2516213 (20.05.2014)
конструкционная сталь -  патент 2478728 (10.04.2013)
способ производства листового проката -  патент 2465347 (27.10.2012)
способ получения текстурированной кремнистой стали, содержащей медь -  патент 2457260 (27.07.2012)
способ изготовления ориентированной si стали с высокими электромагнитными характеристиками -  патент 2450062 (10.05.2012)
способ производства листового проката -  патент 2434951 (27.11.2011)
способ производства холоднокатаных полос низколегированной стали класса прочности 260 -  патент 2432404 (27.10.2011)
способ производства низкоуглеродистой холоднокатаной стали для штамповки и последующего эмалирования -  патент 2424328 (20.07.2011)
сталь конструкционная с высокой ударной вязкостью при криогенных температурах -  патент 2414520 (20.03.2011)
Наверх