шихта для плавки углеродистого ферромарганца

Классы МПК:C22C33/04 плавлением
Автор(ы):,
Патентообладатель(и):Сибирский металлургический институт им.Серго Орджоникидзе
Приоритеты:
подача заявки:
1991-06-24
публикация патента:

Использование: для производства ферросплавов. Шихта для выплавки углеродистого ферромарганца содержит компоненты в следующем соотношении, мас.%: обожженная карбонатная руда 43,0 - 57,0; брикеты из кальций-хлористого концентрата и кокса 23,5 - 36,0; флюс 4,5 - 7,5; железная стружка 4,0 - 5,0; кокс 8,5 - 10,5. При этом брикеты состоят из следующих компонентов, мас.%: кальций-хлоридный концентрат 71,5 - 73,5; кокс 22,0 - 26,0; связующее 2,5 - 4,5. 1 з.п. ф-лы, 2 табл.
Рисунок 1, Рисунок 2

Формула изобретения

1. ШИХТА ДЛЯ ПЛАВКИ УГЛЕРОДИСТОГО ФЕРРОМАРГАНЦА, включающая обожженную карбонатную руду или агломерат, флюсы, железную стружку и кокс, отличающаяся тем, что, с целью снижения расхода электроэнергии и кокса, она дополнительно содержит брикеты из кальций-хлоридного концентрата и кокса при следующих соотношениях компонентов, мас.%

Обожженная карбонатная руда или агломерат 43,0 - 57,5

Брикеты из кальций-хлоридного концентрата и кокса 23,5 - 36,0

Флюс 4,5 - 7,5

Железная стружка 4,0 - 5,0

Кокс 8,5 - 10,5

2. Шихта по п.1, отличающаяся тем, что брикеты состоят из следующих компонентов, мас.%

Кальций-хлоридный концентрат 71,5 - 73,5

Кокс 22,0 - 26,0

Связующее 2,5 - 4,5

Описание изобретения к патенту

Изобретение относится к черной металлургии и может быть использовано для производства ферросплавов.

Карбонатные руды находят при производстве марганцевых ферросплавов все большее применение. Однако эти руды отличаются высоким содержанием фосфора. Поэтому выплавка из них стандартных по фосфору сплавов связана с большими трудностями.

Известна шихта для плавки углеродистого ферромарганца, включающая карбонатную руду, флюсы (доломит и известняк), железную стружку и кокс, при следующем соотношении компонентов, мас.%: Карбонатная руда 76-78 Железная стружка 2-4 Известняк 10-12 Кокс 12-15

Однако даже при введении в эту шихту значительных количеств железной стружки, например при выплавке сплавов с содержанием марганца 70%, концентрация фосфора в металле не снижается ниже 0,60-0,70%. Велики и кратность шлака (шихта для плавки углеродистого ферромарганца, патент № 20230421,8 т/т) и расход электроэнергии (шихта для плавки углеродистого ферромарганца, патент № 20230424400-4500 кВт/т) и потери марганца с отвальным шлаком (> 20%).

Наиболее близкой к заявляемой является шихта, состоящая из обожженной карбонатной руды, малофосфористого шлака (МФШ), железной стружки, флюсов и кокса, при следующем соотношении компонентов, мас.%:

Обожженная карбонатная руда (агломерат) 48,5-58,9 МФШ 12,0-21,7 Железная стружка 1,0-2,0

Флюсы (доломит, известняк) 16,0-17,0 Кокс 11,5-12,9

На этой шихте удается получать сплав с содержанием фосфора 0,25-0,35%. Однако показатели плавки ферромарганца при этом получаются очень низкими. Расход электроэнергии превышает 4300 кВтч/т, а извлечение марганца не превышает 65-70%.

Целью изобретения является уменьшение расхода электроэнергии и кокса.

Поставленная цель достигается тем, что в шихту, содержащую обожженную карбонатную руду, известняк или доломит, железную стружку и кокс, дополнительно вводят брикеты из кальцийхлоридного марганцевого концентрата (КХО), при следующем соотношении компонентов, мас.%:

Обожженная карбонатная руда 43,0-57,5

Брикеты из кальцийхлорид- ного концентрата 23,5-36,0 Известняк или доломит 4,5-7,5 Железная стружка 4,0-5,0 Кокс 8,5-10,5

Поставленная цель достигается также тем, что брикеты из кальцийхлоридного концентрата имеют следующий состав, мас.%:

Концентрат кальций- хлоридный 71,5-73,5 Коксовая мелочь 22,0-26,0 Связующее 2,5-4,5

Введение в шихту брикетов, состоящий из КХО, мелочи, кокса и связующего позволяет на 30-50% , т.е. почти вдвое уменьшить расход металлургического кокса, заменив его мелочью. Это значительно понижает электропроводность шихты, позволяет повысить рабочее напряжение и уменьшить потери электроэнергии в короткой сети на 18,5-22% и только за счет уменьшения потерь в короткой сети уменьшить расход электроэнергии на 100-220 кВтч/т. Кроме того, повышается и извлечение марганца, что в свою очередь понижает расход электроэнергии еще на 200-300 кВтч/т.

Попытки применения при плавке ферромарганца брикетов с введенным в них восстановителем известны. Однако подобные брикеты с использованием в них обычных концентратов давали отрицательные результаты. Показатели плавки не только не улучшились, но и были заметно более низкими, чем в том случае, когда брикеты в шихте отсутствовали. Последнее связано с тем, что брикеты, изготовленные из обычных руд и концентратов, рассыпаются. Это объясняется, как показали проведенные исследования, тем, что восстановление марганца по реакции

MnO + (1 + X)C = MnCx + CO (1) происходит при Т шихта для плавки углеродистого ферромарганца, патент № 2023042 1690К, тогда как благодаря высокому содержанию в рудах SiO2 и образованию силикатов начинается плавление брикетов при температуре Т шихта для плавки углеродистого ферромарганца, патент № 2023042 1500К. Образование силикатов, как известно, начинается в твердой шихте и с большой скоростью идет при 1200-1300К, поэтому избежать раннего шлакообразования невозможно. Образование силикатов понижает активность MnO и примерно на 100К повышает температуру начала его восстановления. Самое же главное, раннее шлакообразование приводит к сегрегации шихты по удельному весу. Брикеты из обычной руды при этом распадаются, а кокс из брикетов всплывает, что и является главной причиной неудовлетворительного восстановления MnO из брикетов, изготовленных из обычной руды. В данном изобретении брикеты изготавливаются из кальцийхлоридного концентрата (Mn 59-64%; SiO2 шихта для плавки углеродистого ферромарганца, патент № 20230420,5%; CaCl2 шихта для плавки углеродистого ферромарганца, патент № 2023042 3-5%; Fe 0,02-0,5%). Марганец в этом концентрате в основном представлен гаусманитом (Mn3O4) и монооксидом (MnO). Концентрация SiO2 в нем ничтожна. Температура плавления MnO, как известно, составляет шихта для плавки углеродистого ферромарганца, патент № 2023042 2123К, что более чем на 400К превышает температуру начала восстановления MnO. Поэтому тесное смешение КХО с восстановителем позволяет не только уменьшить количество кокса в шихте, но и ускорить восстановление MnO.

С другой стороны, показатели плавки ферромарганца определяются в значительной мере соотношением между расходом брикетов и расходом обожженной карбонатной руды. Это соотношение определяет количество образующегося в ходе плавки шлака и, следовательно, определяет и величину потерь марганца с отвальным шлаком и величину потерь испарением. Минимальные потери марганца с отвальным шлаком и испарением имеют место при кратности шлака примерно равной 0,5-0,75. При большем количестве шлака растут как потери с отвальным шлаком невосстановленного марганца, так и потери металла в виде корольков, брызг и скрапин и др. С другой стороны уменьшение кратности шлака меньше 0,5, особенно при плавке ферромарганца в современных сверхмощных электропечах, также увеличивает потери марганца, в особенности потери испарением. Последнее связано с тем, что при кратности шлака менее 0,5 очень трудно избежать дугового режима и, следовательно, местных интенсивных перегревов металла.

П р и м е р 1. Из кальцийхлоридного концентрата и кокса фракций 0,25 мм приготовили брикеты. Брикеты испытали в сыром состоянии, после обжига, а также при высоких температурах. Для сравнения испытали брикеты из окисного концентрата (Mn 42%, SiO2 17,5%). Результаты их испытания приведены в табл. 1.

П р и м е р 2. В печи 100 КВА провели серию плавок на шихте, состоящей из обожженной карбонатной руды, брикетов, железной стружки флюсов и кокса. Для сравнения провели плавку на шихте с МФШ (прототип). Их результаты приведены в табл. 2.

Плавка на шихте с брикетами из кальций-хлоридного концентрата позволяет значительно уменьшить кратность шлака и расход электроэнергии при плавке ферромарганца, а также уменьшить расход кускового кокса на единицу сплава и по сравнению с прототипом уменьшить расход электроэнергии на 1000-1200 кВтч, в том числе за счет уменьшения потерь в короткой сети на 200 кВтч/т.

Класс C22C33/04 плавлением

шихта и электропечной алюминотермический способ получения ферробора с ее использованием -  патент 2521930 (10.07.2014)
титаносодержащая шихта для алюминотермического получения ферротитана, способ алюминотермического получения ферротитана и способ алюминотермического получения титаносодержащего шлака в качестве компонента титаносодержащей шихты для алюминотермического получения ферротитана -  патент 2516208 (20.05.2014)
шихта и способ алюминотермического получения ферромолибдена с ее использованием -  патент 2506338 (10.02.2014)
способ перевода режима работающей печи при выплавке кремнистых ферросплавов с карборундного метода на бескарборундный -  патент 2504596 (20.01.2014)
суспензионная литая дисперсионно-твердеющая ферритокарбидная штамповая сталь -  патент 2487958 (20.07.2013)
способ удаления титана из высокохромистых расплавов -  патент 2471874 (10.01.2013)
способ алюминотермического получения ферромолибдена -  патент 2468109 (27.11.2012)
алюминотермический способ получения металлов и плавильный горн для его осуществления -  патент 2465361 (27.10.2012)
способ получения азотированного феррованадия -  патент 2462525 (27.09.2012)
способ извлечения молибдена, никеля, кобальта или их смеси из отработанных или регенерированных катализаторов -  патент 2462522 (27.09.2012)
Наверх