устройство для измерения физических свойств материалов

Классы МПК:G01N29/00 Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы
Автор(ы):, ,
Патентообладатель(и):Институт монокристаллов АН Украины
Приоритеты:
подача заявки:
1991-02-15
публикация патента:

Изобретение относится к устройствам измерения температурных зависимостей физических свойств материалов акустическим методом. Цель изобретения - повышение точности измерений. Это достигается тем, что в устройстве, содержащем преобразователь звука, акустически связанные с ним и между собой мембрану и предназначенный для закрепления контролируемого объекта шток, усилитель, выход которого соединен с преобразователем звука, катушку индуктивности, индуктивно связанную с штоком и подключенную к входу усилителя, стакан, установленный в емкость с жидким азотом, в котором в парах азота расположен шток и магнитоэлектрический преобразователь, согласно изобретению последний размещен снаружи на внешней стенке стакана в жидком азоте. Такое выполнение устройства позволяет избежать дополнительных погрешностей, вносимых за счет температурного дрейфа наведенной в катушке преобразователя ЭДС. 1 ил.
Рисунок 1

Формула изобретения

УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ МАТЕРИАЛОВ, содержащее преобразователь звука, акустически связанные с ним и между собой мембрану и предназначенный для закрепления контролируемого объекта шток, усилитель, выход которого соединен с преобразователем звука, катушку индуктивности, индуктивно связанную со штоком и подключенную к входу усилителя, стакан, установленный в емкости с жидким азотом, в котором расположен шток в парах азота, и магнитоэлектрический преобразователь, отличающееся тем, что, с целью повышения точности измерений, магнитоэлектрический преобразователь размещен на наружной стенке стакана в жидком азоте.

Описание изобретения к патенту

Изобретение относится к устройствам измерения температурных зависимостей физических свойств материалов акустическим методом.

Известно устройство, состоящее из усилителя электрических колебаний, возбуждающего и приемного пьезокварцев, измерителей частоты и амплитуды. Возбуждение ультразвуковых колебаний частотой 100 кГц и измерение внутреннего трения исследуемого образца проводится методом составного вибратора. При этом возбуждающий и приемный пьезокварцы приклеиваются непосредственно к исследуемому образцу и вместе с ним составляет единую акустическую систему. Частота электрического сигнала, подаваемая на вибратор, поддерживается равной собственной частоте акустической системы за счет использования автогенераторной схемы [1] .

Наиболее близким по технической сущности и достигаемому эффекту и выбранным в качестве прототипа является устройство для измерения физических свойств материалов, содержащее акустический преобразователь, акустически связанные с ним и между собой мембрану и предназначенный для закрепления контролируемого объекта шток, усилитель, выход которого соединен с преобразователем звука, катушка индуктивности, индуктивно связанную с штоком и подключенную к входу усилителя, стакан, установленный в емкости с жидким азотом, и магнитоэлектрический преобразователь [2] .

Основным недостатком известного устройства является температурная нестабильность сигнала магнитоэлектрического преобразователя, обусловленная изменением температуры внутри стакана, а следовательно, и точность измерений.

Цель изобретения - повышение точности измерений.

Это достигается тем, что в устройстве для измерения физических свойств материалов, содержащем преобразователь звука, акустически связанные с ним и между собой мембрану и предназначенный для закрепления контролируемого объекта шток, усилитель, вход которого соединен с преобразователем звука, катушку индуктивности, индуктивно связанную с штоком и подключенную к входу усилителя, стакан, установленный в емкости с жидким азотом, в котором расположен шток в парах азота, и магнитоэлектрический преобразователь, согласно изобратению последний размещен на наружной стенке стакана в жидком азоте.

Сущность изобретения заключается в следующем.

Преобразователь звука, подключенный своей обмоткой к выходу усилителя, преобразует электрический сигнал в звуковые колебания и через мембрану и шток воздействует на образец контролируемого материала. С штоком индуктивно связана индукционная катушка, которая своим выходом подключена к входу усилителя. Таким образом замыкается петля положительной обратной связи, обеспечивающей поддержание колебаний, акустической системы (мембрана, шток, образец) на собственной резонансной частоте. Шток с образцом вводится во внутрь стакана, который установлен в сосуде Дьюара с жидким азотом. Жидкий азот на внешней стенке стакана и пары азота внутри его создают линейно-изменяющееся по высоте температурное поле. Магнитоэлектричский преобразователь, который состоит из индукционной катушки и постоянного магнита, размещен на наружной стенке стакана в жидком азоте, в непосредственной близости от образца. Находясь в постоянном магнитном поле в колебательном режиме, образец при переходе в сверхпроводящее состояние наводит в индукционной катушке преобразователя ЭДС.

Измеряя собственную резонансную частоту колебаний акустической системы в процессе вытягивания штока с образцом из стакана, можно определить изменение модуля упругости и скорости звука в заданном диапазоне температур. Диапазон температур задается величиной и скоростью вытягивания образца из стакана. По изменению ЭДС, наведенной в индукционной катушке преобразователя, можно определить температуру фазового перехода образца в сверхпроводящее состояние и температурную зависимость магнитной восприимчивости материала.

Размещение магнитоэлектрического преобразователя в жидком азоте на наружной стенке стакана при перемещении штока с образцом в парах азота внутри стакана обеспечивает работу преобразователя при постоянной температуре, исключает температурный дрейф наведенной в индукционной катушке ЭДС, и, следовательно, повышает точность измерения физических свойств материалов в заданном диапазоне температур.

На чертеже представлено предлагаемое устройство.

Устройство состоит из усилителя 1 электрических колебаний, измерителей амплитуды 2 и частоты 3, преобразователя 4 звука, мембраны 5, штока 6, индукционной катушки 7, магнита 8, исследуемого образца 9, стакана 10, сосуда Дьюара 11 с азотом и магнитоэлектрического преобразователя 12.

Работает устройство следующим образом.

Преобразователь 4 звука, подключенный своей обмоткой к выходу усилителя 1, преобразует электрический сигнал в звуковые колебания и через мембрану 5 и шток 6 воздействует на исследуемый образец 9. С штоком 6 индуктивно связана индукционная катушка 7, которая своим выходом подключена к входу усилителя 1. Таким образом замыкается петля положительной обратной связи, обеспечивающая поддержание колебаний акустической системы на собственной резонансной частоте. Измеряя собственную резонансную частоту F с помощью измерителя частоты 3 и зная длину штока с исследуемым образцом L, можно определить модуль упругости Е и скорость звука устройство для измерения физических свойств материалов, патент № 2011190 из соотношения

F = устройство для измерения физических свойств материалов, патент № 2011190Lустройство для измерения физических свойств материалов, патент № 2011190 где устройство для измерения физических свойств материалов, патент № 2011190 - плотность материала.

С исследуемым образцом 9 индуктивно связана обмотка магнитоэлектрического преобразователя 12. При переходе образца в сверхпроводящее состояние в индукционной катушке наводится ток, фиксирующий этот переход и магнитную восприимчивость образца.

Измерение физических свойств ВТСП-материалов проводится в парах азота, при вытягивании исследуемого образца из стакана 10 путем механического перемещения сосуда Дьюара 11 со скоростью 30 мм/ч в диапазоне температур 80-120 К.

П р и м е р. На нижний конец штока 6, выполненного из деревянного стержня, приклеивают с помощью специального состава (мелкодисперсный тальк с кремнеорганическим маслом в соотношении 2: 1) исследуемый образец 9 ВТСП-керамики. На внешней стенке стакана 10, выполненного из кварца, устанавливают магнитоэлектрический преобразователь 12. Стакан с преобразователем устанавливают в сосуд Дьюара 11 с жидким азотом. В процессе вытягивания исследуемого образца из стакана измеряются изменения температуры с помощью медь-константоновой термопары и собственная резонансная частота составного вибратора (шток с образцом) с помощью цифрового частотомера типа 43-35А в режиме измерения длительности импульсов, с погрешностью измерения не хуже 0,1% . Измерения температуры и резонансной частоты проводятся каждые 3 с, опрос на проведение измерений, прием информации, ее обработка и построение зависимости резонансной частоты от температуры осуществляется с помощью микро-ЭВМ. Измерение температурной зависимости магнитной восприимчивости проводилось с помощью двухкоординатного самописца типа Н-307, на вход У которого подается сигнал с магнитоэлектрического преобразова- теля, а на вход Х - с термопары. (56) 1. Лебедева А. Б. , Кустов С. Б. и Кардашев Б. К. Акустический эффект при активном деформировании и ползучести алюминия ФТТ. т. 29, в. 12, 1987, с. 3563-2569.

2. Авторское свидетельство СССР N 1714487, кл. G 01 N 29/00, 1989.

Класс G01N29/00 Исследование или анализ материалов с помощью ультразвуковых, звуковых или инфразвуковых волн; визуализация внутреннего строения объектов путем пропускания через них ультразвуковых или звуковых волн через предметы

инспекционное устройство для обнаружения посторонних веществ -  патент 2529667 (27.09.2014)
способ измерения продольного и сдвигового импендансов жидкостей -  патент 2529634 (27.09.2014)
устройство контроля при контролировании посторонних веществ -  патент 2529585 (27.09.2014)
способ акустико-эмиссионного контроля качества сварных стыков рельсов и устройство для его осуществления -  патент 2528586 (20.09.2014)
система ультразвукового контроля -  патент 2528578 (20.09.2014)
образец для тестирования и настройки установки ультразвукового контроля листового проката -  патент 2528111 (10.09.2014)
способ непрерывного контроля средней влажности волокон в волоконной массе -  патент 2528043 (10.09.2014)
способ лабораторного контроля влажности волокон в массе -  патент 2528041 (10.09.2014)
способ лабораторного контроля средней тонины волокон в массе -  патент 2527146 (27.08.2014)
способ измерения влажности нефти -  патент 2527138 (27.08.2014)
Наверх