паровая турбина

Классы МПК:F01K7/18 турбины с многократным впуском рабочего тела 
F01D11/06 регулирование его 
F01K17/06 рекуперация энергии пара в паросиловых установках, например использование отработавшего пара для сушки твердого топлива, сжигаемого в той же установке 
Автор(ы):
Патентообладатель(и):Дженерал Электрик Компани (US)
Приоритеты:
подача заявки:
2010-06-10
публикация патента:

Паровая турбина содержит первый кожух, содержащий первую турбину, функционально присоединенную к вращающемуся валу и выполненную с возможностью работы при первой температуре. Концевое уплотнение предназначено для частичного уплотнения первого кожуха с вращающимся валом. Регулятор проходящего через уплотнение пара предназначен для приема потока пара из концевого уплотнения. Второй кожух содержит вторую турбину, функционально присоединенную к вращающемуся валу и выполненную с возможностью работы при второй температуре, которая меньше первой температуры. Эжектор предназначен для создания смеси из по меньшей мере части потока пара, получаемого из указанного регулятора, и пара, отводимого из расположенной выше по потоку камеры заданной ступени второй турбины, и для введения указанной смеси во вторую турбину. Позволяет полезно использовать пар утечек из уплотнений высокотемпературной части турбины, обладающий повышенной для низкотемпературной части турбины температурой и пониженным давлением, для работы в низкотемпературной части турбины. 9 з.п. ф-лы, 10 ил. паровая турбина, патент № 2527802

паровая турбина, патент № 2527802 паровая турбина, патент № 2527802 паровая турбина, патент № 2527802 паровая турбина, патент № 2527802 паровая турбина, патент № 2527802 паровая турбина, патент № 2527802 паровая турбина, патент № 2527802 паровая турбина, патент № 2527802

Формула изобретения

1. Паровая турбина (100), содержащая

первый кожух (110), содержащий первую турбину (102), функционально присоединенную к вращающемуся валу (114) и выполненную с возможностью работы при первой температуре, и концевое уплотнение (112), предназначенное для частичного уплотнения первого кожуха (110) с вращающимся валом (114),

регулятор (133) проходящего через уплотнение пара, предназначенный для приема потока пара (130) из концевого уплотнения (112),

второй кожух (116), содержащий вторую турбину (106), функционально присоединенную к вращающемуся валу (114) и выполненную с возможностью работы при второй температуре, которая меньше первой температуры, и

эжектор (140), предназначенный для создания смеси (142) из по меньшей мере части (134) потока пара (130), получаемого из указанного регулятора (133), и пара (144), отводимого из расположенной выше по потоку камеры (146) заданной ступени второй турбины (106), и для введения указанной смеси (142) во вторую турбину (106).

2. Паровая турбина (100) по п.1, в которой указанная смесь (142) вводится в указанную расположенную выше по потоку камеру (146) заданной ступени.

3. Паровая турбина (100) по п.1, в которой вторая турбина (106) содержит несколько ступеней, при этом указанная смесь (142) вводится в расположенную выше по потоку камеру (146) предыдущей ступени второй турбины (106), отличной от заданной ступени.

4. Паровая турбина (100) по п.1, в которой эжектор (140) содержит камеру (150), установленную снаружи на втором кожухе (116) и имеющую отверстия (152), проточно сообщающиеся с внутренней частью второго кожуха (116) и указанным регулятором (133).

5. Паровая турбина (100) по п.4, в которой эжектор (140) содержит диффузор (154), установленный в указанной камере (150) и имеющий впуск (156), в который поступает указанная по меньшей мере часть (134) потока пара (130), выходящего из указанного регулятора (133), и пар (144), отводимый из заданной ступени второй турбины (106).

6. Паровая турбина (100) по п.5, в которой эжектор (140) дополнительно содержит сопло (160), установленное в указанной камере (150) и предназначенное для введения указанной по меньшей мере части (134) потока пара (130), проходящего из указанного регулятора (133), к впуску (156) диффузора (154), при этом поток пара (130) из сопла (160) втягивает указанный пар (144) из расположенной выше по потоку камеры (146) заданной ступени второй турбины (106).

7. Паровая турбина (100) по п.5, в которой эжектор (140) дополнительно содержит механический насос (166), предназначенный для втягивания указанного пара (144) из расположенной выше по потоку камеры (146) заданной ступени второй турбины (106) и введения указанного пара вместе с указанной по меньшей мере частью (134) потока пара (130), проходящего из указанного регулятора (130), во впуск (156) диффузора (154).

8. Паровая турбина (100) по п.1, в которой эжектор (140) установлен внутри второго кожуха (116).

9. Паровая турбина (100) по п.8, в которой эжектор (140) содержит диффузор (154), имеющий впуск (156), в который поступает указанная по меньшей мере часть (134) потока пара (130), выходящего из указанного регулятора (133), и пар (134), отводимый из заданной ступени второй турбины (106).

10. Паровая турбина (100) по п.9, в которой эжектор (140) дополнительно содержит сопло (160), предназначенное для введения указанной по меньшей мере части (134) потока пара (130), выходящего из указанного регулятора (133), во впуск (156) диффузора (154), при этом поток пара (130) из сопла (160) втягивает пар (144) из расположенной выше по потоку камеры (146) заданной ступени второй турбины (106).

Описание изобретения к патенту

ПРЕДПОСЫЛКИ ИЗОБРЕТЕНИЯ

Данное изобретение в целом относится к паровым турбинам. Более конкретно, данное изобретение относится к смешиванию по меньшей мере части потока более горячего пара, возможно проходящего из первой турбины, с более холодным паром из второй турбины, и введению этой смеси во вторую турбину.

В современных турбоустановках, таких как паровые турбины, часто используются несколько кожухов, в которых находятся турбины, присоединенные к общему вращающемуся валу и работающие при различных температурах и давлениях. Например, паровая турбина может содержать кожух высокого давления (ВД), кожух среднего давления (СД) и кожух низкого давления (НД). Каждый кожух может содержать турбину, в которой каждая ступень содержит ряд лопаток, присоединенных к вращающемуся валу. Пар под давлением, воздействуя на лопатки, обеспечивает их вращение и проходит к следующей ступени. Для удержания пара внутри соответствующего кожуха каждый кожух содержит комплект бесконтактных уплотнительных блоков, называемых концевым уплотнительным блоком. Каждый концевой уплотнительный блок содержит ряд бесконтактных уплотнений, таких как пластинчатые, щеточные, лабиринтные уплотнения и т.д., которые частично уплотняют вращающийся вал паровой турбины. Вследствие наличия некоторого зазора в этих уплотнениях происходит неизбежная протечка пара, скорость которой зависит от геометрии уплотнения, зазора, а также перепада температур пара внутри кожуха и воздуха снаружи кожуха.

В паровых турбинах, содержащих кожух ВД, часть пара, проходящая через концевое уплотнение ВД и превышающая количество пара, требуемое для регулятора парового уплотнения, сбрасывается в конденсатор, что в результате приводит к потере возможности получить работу для вращения вала. Теоретически данный пар может быть введен в турбину, находящуюся в кожухе НД, для обеспечения полезной работы. Однако на практике данный пар является слишком горячим, чтобы подводить его непосредственно к турбине НД, так как его температура превышает допустимые значения температур для материала, из которого выполнена турбина НД, что обусловливает неспособность регулировать температуру пара в кожухе ВД.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В первом аспекте данного изобретения предложена паровая турбина, содержащая первый кожух, содержащий первую турбину, функционально присоединенную к вращающемуся валу и выполненную с возможностью работы при первой температуре, и концевое уплотнение, предназначенное для частичного уплотнения первого кожуха с вращающимся валом, регулятор проходящего через уплотнение пара, предназначенный для приема потока пара от концевого уплотнения, второй кожух, содержащий вторую турбину, функционально присоединенную к вращающемуся валу и выполненную с возможностью работы при второй температуре, которая меньше первой температуры, и эжектор, предназначенный для образования смеси из по меньшей мере части потока пара, выходящего из указанного регулятора, и пара, отводимого из расположенной выше по потоку камеры заданной ступени второй турбины, и введения этой смеси во вторую турбину.

Во втором аспекте данного изобретения предложено устройство, содержащее эжектор, предназначенный для создания смеси из пара от источника, имеющего первую температуру, и пара, отводимого из расположенной выше по потоку камеры заданной ступени турбины, которая работает при второй температуре, меньшей, чем первая температура, и для введения этой смеси в турбину.

В третьем аспекте данного изобретения предлагается паровая турбина, содержащая турбину, выполненную с возможностью работы при первой температуре, источник пара, который имеет вторую температуру, превышающую первую температуру, и эжектор, предназначенный для создания смеси из по меньшей мере части потока пара, полученного от источника пара, и пара, отводимого из расположенной выше по потоку камеры заданной ступени турбины, и введения этой смеси в указанную турбину.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 изображает вид в аксонометрии паровой турбины с частичным вырезом;

фиг.2А-2С изображают схематически примеры компоновок паровых турбин;

фиг.3 изображает частичный разрез паровой турбины, содержащей эжектор, в соответствии с одним вариантом выполнения изобретения;

фиг.4 изображает схематически разрез эжектора, показанного на фиг.3;

фиг.5 изображает частичный разрез паровой турбины, содержащей эжектор, в соответствии с другим вариантом выполнения изобретения;

фиг.6 изображает схематически разрез эжектора, показанного на фиг.5;

фиг.7 изображает частичный разрез паровой турбины, содержащей эжектор, в соответствии с еще одним вариантом выполнения изобретения;

фиг.8 изображает частичный разрез паровой турбины, содержащей эжектор, в соответствии с другим вариантом выполнения изобретения.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

В дальнейшем приведено описание по меньшей мере одного варианта выполнения данного изобретения в соответствии с его использованием в паровой турбине, а также при работе паровой турбины. Однако специалистам в данной области техники следует понимать, что данное изобретение аналогичным образом может быть использовано в любой подходящей турбине и/или двигателе. Варианты выполнения данного изобретения предлагают устройства и способы, обеспечивающие смешивание высокотемпературного пара с более холодным паром из низкотемпературной турбины для уменьшения проблем, связанных с несоответствием температур. Данное смешивание может быть получено с помощью, например, эжектора в виде гидравлического насоса, или обычного эжектора, или струйного усилителя, действующего на основе эффекта Coanda (т.е. тенденции потока текучей среды притягиваться к смежной изогнутой поверхности). Если для смешивания и охлаждения более горячего поступающего пара используется введение пара из места впрыскивания, то увеличение требуемого давления является весьма небольшим, а большие отношения смешивания могут быть получены с помощью эжектора. Если требуется поток с меньшим отношением смешивания, тогда эжектор может использоваться для втягивания пара из ступени низкого давления и повторного его введения в предыдущую ступень (расположенную выше по потоку) для дополнительного улучшения характеристик. В обоих случаях смешивание более горячего пара с паром, имеющим более низкую температуру, полученным из турбины НД, обеспечивает понижение температуры.

Обратимся к чертежам, где на фиг.1 показан вид в аксонометрии с частичным вырезом паровой турбины 10, которая содержит ротор 12 с вращающимся валом 14 и разнесенными по оси рабочими колесами 18. К каждому рабочему колесу 18 механически присоединены вращающиеся лопатки 20. Более конкретно, лопатки 20 расположены рядами, которые проходят по периферии вокруг каждого рабочего колеса 18. По окружности вокруг вала 14 проходят неподвижные лопатки 22, которые расположены в осевом направлении между смежными рядами лопаток 20. Неподвижные лопатки 22 вместе с лопатками 20 образуют ступень турбины и ограничивают часть проточного тракта турбины 10. При эксплуатации пар 24 поступает во впускное отверстие 26 турбины 10 и проводится через неподвижные лопатки 22, которые направляют пар 24 дальше к лопаткам 20. Затем пар 24 проходит через остальные ступени, оказывая воздействие на лопатки 20 и вызывая вращение вала 14. По меньшей мере один конец турбины 10 может проходить в осевом направлении от вала 12 и может быть присоединен к нагрузке или к машинному оборудованию (не показано) такому, как генератор, и/или к другой турбине, но не ограничиваясь этим.

В одном варианте изобретения, как показано на фиг.1, турбина 10 содержит пять ступеней. Эти пять ступеней обозначены ссылочными позициями L0, L1, L2, L3, и L4. Ступень L4 является первой ступенью и представляет собой наименьшую (в радиальном направлении) ступень из указанных пяти ступеней. Ступень L3 является второй ступенью и является следующей ступенью в осевом направлении. Ступень L2 является третьей ступенью, расположенной посередине в группе из пяти ступеней. Ступень L1 является четвертой, предпоследней ступенью. Ступень LO является последней ступенью и представляет собой наибольшую (в радиальном направлении) ступень. Следует понимать, что данные пять ступеней показаны лишь в качестве примера, при этом турбина может иметь больше или меньше пяти ступеней. Кроме того, как будет изложено в данном документе, основные положения изобретения не ограничиваются многоступенчатой турбиной.

Фиг.2А - 2С показывают схематические изображения иллюстративных паровых турбин 100 в соответствии с вариантом выполнения данного изобретения. Как показано на фиг.2А, большая паротурбинная установка может фактически содержать несколько турбин, присоединенных соосно к одному и тому же вращающемуся валу 114. Как вариант, как показано на фиг.2 В, одна или более турбин могут быть присоединены к различным вращающимся валам 114А, 114В. В любом случае подобная установка может, например, содержать турбину 102 высокого давления (ВД), турбину 104 среднего давления (СД) и турбину 106 низкого давления (НД). Более конкретно, как показано на фиг.2А, паровая турбина 100 может содержать первый кожух 110 с первой турбиной 102 (ВД), функционально присоединенной к вращающемуся валу 114 и работающей при первой температуре Ti. Первая температура Ti может быть высокой температурой, которая может быть, например выше 700°F (около 370°С), однако могут использоваться другие температуры. Подразумевается, что кожух 110 содержит концевое уплотнение 112, обеспечивающее частичное уплотнение первого кожуха 110 с валом 114. Для других кожухов, относящихся к валу 114 или валу 114А, 114 В (фиг.2 В), в зависимости от обстоятельств, могут использоваться аналогичные концевые уплотнения. Данные кожухи могут быть выполнены из такого материала, как нержавеющая сталь или сплав стали с хромом, молибденом, ванадием и/или другими элементами для улучшения его прочности в условиях повышенных температур. Следует понимать, что приведенные чертежи выполнены не в масштабе и что паровые турбины НД могут быть больше либо турбины ВД, либо турбины СД. В другом варианте выполнения, как показано на фиг.2С, внутри одного кожуха 111 может быть расположено более одной турбины 102, 106.

Турбины 102, 104, 106 имеют аналогичную конструкцию, но работают при различных температурах и давлениях. Например, второй кожух 116 может содержать вторую турбину 106 (НД), функционально присоединенную к валу 114 (фиг.2А) или вращающемуся валу 114А (фиг.2 В), с возможностью работы при второй температуре Т2, меньшей, чем первая температура T1. Вторая температура Т2 может быть относительно низкой температурой, диапазон которой составляет приблизительно, например, 200°F - 300°F (около 90°С - 150°С), однако возможно использование других температур. Кожух 116 также содержит концевое уплотнение 118, обеспечивающее частичное уплотнение кожуха 116 с валом 114 (фиг.2А) или валом 114А (фиг.2В). Кожух 116 может быть выполнен, например, из углеродистой стали с допустимой для нее температурой около 700°F (около 370°С). Турбина 104 может работать при промежуточной температуре в диапазоне, например, около 350°С - 600°С.Турбина 104 также может быть выполнена из высоколегированного сплава стали, выдерживающего высокие температуры (аналогично кожуху ВД). В другом варианте выполнения, показанном на фиг.2С, один кожух 111 может содержать первую и вторую турбины 102, 106 (НД), функционально присоединенные к валу 114 с одним концевым уплотнением 119. Вторая турбина 106 может работать при второй температуре T2, которая меньше первой температуры T1 первой турбины 102. Вторая температура Т2 может быть относительно низкой температурой, диапазон которой составляет приблизительно, например, 200°F - 300°F (около 90°С - 150°С), однако возможно использование других температур. Кожух 111 может содержать материал, аналогичный вышеуказанному.

Уплотнение 112, 118, 119 содержит ряд бесконтактных уплотнений, например пластинчатых, щеточных, лабиринтных уплотнений и т.д., которые частично уплотняют вращающийся вал паровой турбины. Из-за конечного зазора в этих уплотнениях происходит неизбежная протечка пара, которая приводит к потере возможности получить работу для вращения вала. Скорость протечки зависит от геометрии уплотнения, зазора и перепада температур между паром внутри кожуха и воздухом снаружи кожуха.

Как показано на фиг.2А - 2В, поток пара 130, проходящий из уплотнения 112, захватывается и используется в качестве источника пара 132 (здесь и далее «источник 132 пара»). В примерах, показанных на фиг.2А - 2В, источник 132 выполнен в виде регулятора 133 проходящего из уплотнения пара, который принимает проходящий из уплотнения пар и понижает его давление до уровня, приемлемого для подачи в качестве уплотнительного пара для других концевых уплотнений. Однако, как показано на фиг.2С, источник 132 может содержать любой известный или разработанный впоследствии источник пара, температура которого превышает приемлемую температуру для второй турбины 106 (НД), а давление является более низким, чем приемлемое для турбины 106 (НД) давление. Обычно, что касается вариантов выполнения регулятора проходящего из уплотнения пара (фиг.2А - 2В), то избыточный уплотнительный пар, количество которого превышает пределы, необходимые указанному регулятору для подачи уплотняющего пара в другие концевые уплотнения, подается в конденсатор (не показан). Эта подача обусловлена тем, что давление этого пара является слишком низким, чтобы его использовать где либо еще, кроме турбины 106 (НД), а температура является слишком высокой для материалов, обычно используемых для создания конструкции турбины (НД). В любом случае, температура пара из источника 132 не подходит для использования с материалами, из которых выполнена турбина 106 и кожух 116, а давление пара не подходит для использования в первой турбине 102 (ВД) и турбине 104 СД. Однако в соответствии с вариантом выполнения изобретения по меньшей мере часть 134 потока пара из источника 132 повторно направляется во вторую турбину 106 с помощью эжектора 140 (фиг.3-6), 240 (фиг.7-8) после его смешивания с более холодным паром из турбины 106.

Обратимся к фиг.2А - 4, на которых показан один вариант выполнения эжектора 140. Фиг.3 показывает частичный разрез второй турбины 106, а фиг.4 показывает схематический разрез эжектора 140. В этом варианте выполнения эжектор 140 прикреплен к наружной части кожуха 116 турбины 106 с обеспечением по возможности максимально низкого перепада давления. При необходимости эжектор 140 может быть установлен на удалении от турбины 106. Как лучше всего показано на фиг.4, эжектор 140 образует смесь 142 из по меньшей мере части 134 потока пара из источника 132 и пара 144, отводимого из расположенной выше по потоку камеры 146 заданной ступени (например, L0, L2, L3, L4) (показана ступень L1) турбины 106, и вводит смесь 142 в турбину 106. Часть 134 пара может содержать избыточный поток пара, полученный из регулятора 132, или пар из другого источника.

Эжектор 140 может содержать камеру 150, прикрепленную снаружи ко второму кожуху 116 с использованием любой известной или разработанной впоследствии конструкции. Камера 150 имеет отверстия 152, проточно сообщающиеся (при необходимости через каналы) с внутренней частью кожуха 116 и источником 132 пара (фиг.2А - 2С). Эжектор 140 содержит диффузор 154, расположенный в камере 150 и имеющий впуск 156, предназначенный для приема по меньшей мере части 134 потока пара из источника 132 пара (фиг.2А - 2С), а также пара 144, отводимого из заданной ступени турбины 106. Несмотря на то что эжектор 140 показан с камерой 150, выполненной в виде диффузора 154, следует понимать, что диффузор 154 может быть выполнен в виде отдельной конструкции. Эжектор 140 может дополнительно содержать установленное в камере 150 сопло 160, предназначенное для введения указанной по меньшей мере части 134 потока пара из источника 132 (фиг.2А - 2С) к впуску 156 диффузора 154. Таким образом, поток пара из сопла вытягивает пар 144 из расположенной выше по потоку камеры 146 (т.е. сосуда) заданной ступени второй турбины, образуя, таким образом, гидравлический насос. В другом варианте выполнения сопло 156 может отсутствовать, и вместо него может использоваться механический насос 166 (показан штрихпунктирной линией) (например, вентилятор или компрессор) для вытягивания пара 144 из расположенной выше по потоку камеры 146 заданной ступени.

Более горячий пар 134 из источника 132 может иметь температуру, например, превышающую приблизительно 700°F (около 370°С), а более холодный пар 144 из второй турбины 106 может иметь температуру, например, около 200°F - 300°F (около 90°С - 150°С). При смешивании пара 134 и пара 144 внутри эжектора 140 полученная смесь 142 приобретает температуру, превышающую температуру, имевшуюся ранее в месте ввода данной смеси во вторую турбину 106. Соответственно, эжектор 140 уменьшает проблемы, связанные с ограничением на температуру материала, посредством смешивания более горячего пара 134 с более холодным паром 144, отводимым из турбины 106, так что полученная в результате смесь имеет температуру, близкую к локальной температуре турбины 106.

На фиг.3-4 показано, что смесь 142 вводится в расположенную выше по потоку камеру 146 заданной ступени, из которой отводится пар 144. То есть, смесь 142 вводится в расположенную выше по потоку камеру 146 той же ступени, из которой отводится пар 144. Соответственно, для этого варианта выполнения не требуется многоступенчатой турбины.

В другом варианте выполнения, показанном на фиг.5-6, смесь 142 вводится в расположенную выше по потоку камеру 148 (т.е. сосуд) предыдущей ступени турбины 106, отличной от заданной ступени. Например, как показано на чертеже, пар 144 может быть извлечен из расположенной выше по потоку камеры 146 ступени LO, при этом смесь 142 образуется путем его смешивания с потоком 134 пара с более высокой температурой и вводится в расположенную выше по потоку камеру 148 предыдущей, другой ступени L1. В этом случае турбина 106 должна содержать несколько ступеней. Этот вариант выполнения может быть полезным, когда требуется смешивание в меньшей степени. Несмотря на то, что смесь 142 показана как вводимая в непосредственно предыдущую ступень, она может быть введена в любую одну из предыдущих ступеней или несколько предыдущих ступеней.

На фиг.7-8 показан другой вариант выполнения, в котором эжектор 240 может быть прикреплен изнутри ко второму кожуху 116. Эжектор 240 имеет конструкцию, аналогичную вышерассмотренной конструкции, за исключением возможного отсутствия камеры 150 и возможной необходимости выполнения изоляции 241 (например, перегородок, вкладышей) для защиты кожуха 116 от температур пара 134. Фиг.7 показывает вариант выполнения, в котором эжектор 240 находится в расположенной выше по потоку камере 246 одной ступени турбины. Фиг.8 показывает другой вариант выполнения, в котором эжектор 240 находится в расположенной выше по потоку камере 246 заданной ступени, а смесь 142 вводится в расположенную выше по потоку камеру 248 предыдущей ступени, отличной от заданной ступени. В этом случае от выпускного отверстия 262 через второй кожух 116 может быть выполнен канал 260 к предыдущей другой ступени 248 второй турбины 106.

Эжектор 140, 240 может быть выполнен из любого материала, в достаточной степени выдерживающего температуру и давление проходящего через него пара, например, из нержавеющей стали.

Несмотря на то, что описание вариантов выполнения данного изобретения приведено относительно первой турбины 102 высокого давления, которая обеспечивает более горячий пар 134 для его смешивания с паром 144 из второй турбины 106 низкого давления, следует понимать, что основные положения данного изобретения не ограничиваются этим. То есть, более горячий пар под низким давлением, полученный от любого источника, может смешиваться с паром из любой расположенной ниже по потоку турбины с более низкой температурой и введен обратно в данную турбину. Таким образом, предложенный способ может включать сбор потока пара 130 от концевого уплотнения 112 первого кожуха 110, окружающего первую турбину 102, которая работает при первой температуре T1, или получение пара от источника 132, расположенного в другом месте, который создает пар при аналогичных условиях. Смесь 142 может быть получена из по меньшей мере части 134 потока пара 130 и пара 144, отводимого из расположенной выше по потоку камеры 146 заданной ступени второй турбины 106, которая работает при второй температуре Т2, меньшей, чем первая температура T1. При этом смесь 142 вводится во вторую турбину 106 (или в ту же заданную ступень, или в предыдущую ступень).

Термины «первый», «второй» и им подобные в данном документе не указывают на какой-либо порядок, количество или важность, а используются для отличия одного элемента от другого, а упоминание какого-либо элемента в единственном числе не указывают на ограничение количества, а указывают на наличие по меньшей мере одного указанного элемента. Определение «приблизительно», используемое в сочетании с количественным показателем, определяет заданную величину включительно и имеет значение, обусловленное контекстом (например, учитывает степень погрешности оценки конкретного количественного показателя). Окончание, указывающее на множественное число и приведенное в скобках, указывает как на единственное, так и на множественное число определяемого термина, и, соответственно, включает не менее одного термина (например, выражение «металл (металлы)» включает один или более металлов). Приведенные в данном документе диапазоны значений являются включительными с возможностью независимого сочетания (например, формулировка - диапазоны «вплоть до приблизительно 25% веса, или, более конкретно, приблизительно от 5% до 20% веса», обозначает включение граничных значений и всех промежуточных значений диапазонов от «приблизительно 5% до приблизительно 25% веса» и т.д.).

Несмотря на то, что в данном документе приведено описание различных вариантов выполнения, специалистам в данной области техники следует понимать, что возможно внесение изменений или усовершенствований в данное изобретение, которые подпадают под объем правовой охраны данного изобретения. Кроме того, возможно выполнение различных модификаций, приспосабливающих конкретную ситуацию или материал к идеям и принципам данного изобретения без отклонения от сущности данного изобретения. Таким образом, подразумевается, что данное изобретение не ограничивается конкретным вариантом выполнения, приведенным в качестве предпочтительного варианта выполнения данного изобретения, а распространяется на все варианты выполнения, подпадающие под объем правовой охраны, определенный в прилагаемой формуле изобретения.

Перечень элементов

Паровая турбина10
Ротор12
Вращающийся вал 14
Рабочие колеса 18
Вращающиеся лопатки 20
Неподвижные лопатки 22
Пар24
Впускное отверстие 26
Паровая турбина 100
Вращающийся вал 114
Первая турбина высокого давления (ВД)102
Турбина среднего давления (СД)104
Вторая турбина низкого давления (ВД) 106
Кожух 110, 111, 116
Концевое уплотнение112, 118, 119
Поток пара130
Источник пара 132
Регулятор проходящего через уплотнение пара133
Часть пара134, 144
Эжектор140, 240
Смесь142
Расположенная выше по потоку камера146, 148, 246, 248
Камера 150
Отверстия 152
Диффузор 154
Впуск 156
Сопло 160
Механический насос 166
Изоляция 241
Канал 260
Выпускное отверстие 262

Класс F01K7/18 турбины с многократным впуском рабочего тела 

Класс F01D11/06 регулирование его 

способ регулирования демпфирующей силы в сотовом уплотнении для ротора турбомашин -  патент 2261994 (10.10.2005)
двухвальный газотурбинный двигатель -  патент 2250386 (20.04.2005)

Класс F01K17/06 рекуперация энергии пара в паросиловых установках, например использование отработавшего пара для сушки твердого топлива, сжигаемого в той же установке 

Наверх