керамический материал

Классы МПК:C04B35/00 Формованные керамические изделия, характеризуемые их составом; керамические составы; обработка порошков неорганических соединений перед производством керамических изделий
H01L39/12 отличающиеся материалом
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный университет им. Ф.М. Достоевского" (RU)
Приоритеты:
подача заявки:
2012-12-11
публикация патента:

Изобретение относится к области криоэлектроники и может быть использовано при создании элементов наноэлектроники, активных элементов криоэлектронных схем, работающих в условиях космического вакуума и холода и использующих новые проводящие керамические материалы с очень малым температурным коэффициентом изменения сопротивления. Создан керамический материал следующей химической формулы AgBaPb3Oz, где z=(4,5-6) в зависимости от условий синтеза. Керамический материал имеет стабильные прочностные и электрические характеристики относительно охлаждения до температуры жидкого азота и последующего нагревания до комнатной температуры. Начальное сопротивление образцов зависит от давления прессования изделия и проведения процесса высокотемпературного спекания. 6 ил.

керамический материал, патент № 2515757 керамический материал, патент № 2515757 керамический материал, патент № 2515757 керамический материал, патент № 2515757 керамический материал, патент № 2515757 керамический материал, патент № 2515757

Формула изобретения

Керамический материал, содержащий серебро, свинец и кислород, отличающийся тем, что этот материал дополнительно содержит барий и имеет состав AgxBayPbkO z при следующем соотношении компонент: х=1; y=1; k=3; zкерамический материал, патент № 2515757 4,5-6, имеющий значение коэффициента изменения электрического сопротивления в диапазоне 20-300 К менее 0,00015 K-1 .

Описание изобретения к патенту

Изобретение относится к области криоэлектроники и может быть использовано при создании активных элементов криоэлектронных схем, работающих в условиях космического вакуума и холода и использующих новые проводящие керамические материалы с очень малым температурным коэффициентом изменения сопротивления.

Известен керамический материал YBa2Cu3-xNbx O7 (патент RU 2043981, МПК С04В 35/00, Н01В 12/00), содержащий иттрий, барий, медь, ниобий и кислород, удельное сопротивление которого плавно изменяется при температуре жидкого азота от соответствующего нормальному проводнику значения до изолятора. Это достигается при замещении меди ниобием, концентрация которого 0,1керамический материал, патент № 2515757 х<3.

Известны оксидные керамики GdNiO 3, GdSmNiO3, SmNiO3, SmNdNi2 O6, NdNiO3 с полупроводниковым типом проводимости и отрицательным температурным коэффициентом, имеющие фазовый проводящий переход металл-полупроводник (патент USA 5858902, МПК С04В 35/50). При этом удельное сопротивление керамик меняется в диапазоне 100-10-4 Ом·см, а фазовый переход указанных систем расположен в диапазоне от минус 60 до 330 градусов Цельсия.

Наиболее близким к заявляемому изобретению по составу компонентов является материал Agx Pb2xCuyOz, синтезированный в 2004 году (патент RU 2281927). Материал имеет фазовый переход полупроводник-диэлектрик в области 160-180 К.

Сравнение свойств известных аналогов и ближайшего прототипа с заявляемым материалом по положительным признакам затруднительно ввиду того, что полученный керамический материал не обладает фазовым переходом в диапазоне температур 20-300 К, но имеет низкое значение температурного коэффициента изменения сопротивления, что делает его пригодным для изготовления стабильных резисторов как в керамическом, так и в пленочном исполнении.

Задачей настоящего изобретения является создание простого в технологическом исполнении керамического материала, состоящего из серебра, свинца, бария и кислорода, синтезированного в атмосфере воздуха или кислорода, и имеющего низкое значение температурного коэффициента изменения сопротивления.

Указанный технический результат достигается тем, что создан керамический материал по следующей химической формуле AgBaPb3O4,5+x. При этом кислородный индекс может изменяться в некоторых пределах в зависимости от условий синтеза.

Для приготовления керамических образцов использовались нитраты Pb(NO3)2, Ва(NO 3)2, AgNO3 реактивной чистоты (х.ч., ч.д.а.). Ниже приведена методика приготовления образцов.

1. Смесь предварительно высушенных и взвешенных нитратов серебра, свинца и бария, соответствующих катионному составу AgBaPb 3Oz, смешивалась в следующих соотношениях: 1 весовая часть AgNO3:1,539 весовых частей Ва(NO 3)2:5,849 весовых частей Pb(NO3) 2, помещалась в чистый серебряный тигель и нагревалась до температуры Т=750-850°С. В процессе пиролиза происходило расплавление солей, их перемешивание на молекулярном уровне, разложение до оксидов, взаимодействие оксидов.

При отжиге происходит следующая химическая реакция:

AgNO3+Ba(NO3)2+3Pb(NO3 )2керамический материал, патент № 2515757 AgBaPb3O4,5+x+NO+NO2+O 2

Важным в реакции является соблюдение именно катионного состава в конечной синтезируемой формуле. Количество выделяемых газов не учитывалось.

2. После остывания полученный спек извлекался, размалывался, просеивался и прессовался в диски диаметром 10 мм и толщиной 2-5 мм на гидравлическом прессе. Материал хорошо прессуется и легко отделяется от прессформы.

3. Образцы вновь помещались на серебряную подложку в печь и нагревались до температуры 750-900°С (в зависимости от содержания бария), после чего медленно охлаждались вместе с печью до комнатной температуры. Оптимальная температура отжига выбиралась по усадке образца от начальных размеров (5-7%), а также отсутствию заметного прилипания образцов к серебряной подложке, на которой они находятся в процессе спекания. На фиг.1 представлен режим пиролиза и отжига образцов.

4. В результате были получены образцы, с которых снимались зависимости U(T)~R(T) четырехзондовым методом в интервале температур 20-300 К. Схема установки приведена на фиг.2. В криоячейку 1 (гелиевая криопанель) помещают образец 2 под платиновые или серебряные зонды 3. Через магазин сопротивления 4 от источника тока 7 выставляют стабилизированный ток, текущий через два крайних зонда, который контролируется миллиамперметром 5. С внутренних зондов микровольтметром 6 измерялся потенциал, регистрируемый двухкоординатным самописцем 8. В качестве датчика температуры использовался платиновый термометр сопротивления 9 (тип ТЭП018-05) с рабочим током меньше 2 мА.

Образцы синтезированы в атмосфере воздуха. Содержание кислорода Х в керамике определяется степенью окисления свинца Pb2+ до Pb3+ в смеси в шихте. Например, для керамики Ag 1+Ba2+Pb3керамический материал, патент № 2515757 2+Ozкерамический материал, патент № 2515757 2- значение z=(1·1+1·2+3·2)/2=4,5. Указанная формула формально имеет вид AgBaPb3O 4,5 для атомов свинца полностью в двухвалентном состоянии и AgBaPb3O6 для атомов свинца полностью в трехвалентном состоянии. В процессе отжига весь свинец не может быть переведен в трехвалентное состояние и в получаемой керамике всегда есть определенное количество двухвалентного свинца. Для получения полностью окисленного Pb3+ нужны длительные отжиги в чистом кислороде при давлениях 5-6 атм. Поэтому кислородный индекс Z будет определяться диапазоном значений от 4,5 до 6 в указанных выше формулах, а величина Х от 0 до 1,5. Подбором более сложных режимов отжига и давления кислорода можно варьировать остаточное сопротивление образцов после отжига и температурный коэффициент изменения сопротивления. При следующем соотношении компонент: х=1; у=1; k=3.

При указанных температурах образцы должны отжигаться, находясь на специальном серебряном держателе, который не реагирует как с кислородом, так и с указанными компонентами шихты. Исследуемые образцы не имели адгезии с поверхностью серебра, но прилипали при тех же режимах термообработки к различным керамическим огнеупорным материалам (от шамота до корунда). Повышение температуры отжига возможно до 900°С, но не более. Дальнейшее повышение температуры может привести к расплавлению серебряной подложки (960°С), к заметной деформации образца и вытеканию из его объема значительной части жидкой фазы (в основном PbO).

После синтеза образцы имели достаточную механическую прочность, позволяющую использовать серебряные или платиновые пластинки в качестве измерительных электродов (зондов), которые прижимались к торцам диска специальным винтовым или пружинным зажимом. Керамический материал имел стабильные прочностные и электрические характеристики относительно процесса термоциклирования, представляющего собой охлаждение до температуры жидкого азота и последующего нагревания до комнатной температуры. Начальное сопротивление образцов зависит от давления прессования изделия и проведения процесса высокотемпературного спекания.

На фиг.3 приведены зависимости R(T) для образцов AgPb3 Ox (без бария), синтезированных при различной температуре. Из графика видно, что по мере увеличения температуры спекания уменьшается сопротивление, хотя изменение сопротивления остается примерно одинаковым. На каждом графике вверху указан ток, проходящий через образец. Размер кружков, треугольников и квадратиков примерно соответствует доверительному интервалу при измерении погрешности.

На фиг.4 представлены зависимости R(T) для керамических образцов состава AgBaPb3Oz (заявляемый материал). Полученный керамический и пленочный материал обладает практически с постоянным значением сопротивления в диапазоне температур 20-300 К. Во всем указанном диапазоне величина сопротивления образцов AgBaPb3Oz уменьшалась всего на 2-4% от исходного значения, что сравнимо с точностью измерения при проведении экспериментов. Это позволило оценить верхнее значение температурного коэффициента изменения сопротивления (керамический материал, патент № 2515757 керамический материал, патент № 2515757 0,00015 К-1), вычисленного по формуле

R2=R1·(1+керамический материал, патент № 2515757 (T2-T1)),

керамический материал, патент № 2515757 =(R2-R1)/(R1(T2 -T1)),

где значения R2, R1 и (T2-T1) можно взять из фиг.4.

Материал может быть использован при создании элементов криоэлектронных схем, например сопротивлений как в керамическом, так и пленочном исполнении. Напыление тонких пленок методом лазерной абляции из керамических образцов на подложки из сапфира (монокристаллический Al2O3) позволило получить пленки сопротивлением от десятков Ом до нескольких МОм с таким же температурным коэффициентом изменения сопротивления.

На фиг.5 приведена зависимость R(T) для керамических образцов AgBa2Pb3Oz, содержащих вдвое больше бария. При этом резко увеличивается коэффициент изменения сопротивления. На фиг.6 приведена зависимость R(T) для керамических образцов AgBa3Pb3O z. С таким содержанием бария образцы меняют свои резистивные характеристики, форму и объем в течение нескольких дней.

Указанные на фиг.5 и 6 зависимости подтверждают, что увеличение концентрации бариевой компоненты приводит к нестабильности резистивных характеристик, а оптимальной формулой материала является AgBaPb 3Oz.

Класс C04B35/00 Формованные керамические изделия, характеризуемые их составом; керамические составы; обработка порошков неорганических соединений перед производством керамических изделий

нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
композиционный керамический материал -  патент 2529540 (27.09.2014)
деталь малой толщины из термоструктурного композиционного материала и способ ее изготовления -  патент 2529529 (27.09.2014)
керамический материал с низкой температурой обжига -  патент 2527965 (10.09.2014)
огнеупорный блок для стеклоплавильной печи -  патент 2527947 (10.09.2014)
способ получения керамики из оксида иттербия -  патент 2527362 (27.08.2014)
керамический композиционный материал на основе алюмокислородной керамики, структурированной наноструктурами tin -  патент 2526453 (20.08.2014)
спин-стекольный магнитный материал -  патент 2526086 (20.08.2014)
способ получения кварцевой керамики -  патент 2525892 (20.08.2014)
способ изготовления керамических тиглей для алюмотермической выплавки лигатур, содержащих ванадий и/или молибден -  патент 2525890 (20.08.2014)

Класс H01L39/12 отличающиеся материалом

способ получения материалов на основе y(вахве1-x)2cu3o7- -  патент 2486161 (27.06.2013)
способ получения высокотемпературного сверхпроводника в системе алюминий - оксид алюминия -  патент 2471269 (27.12.2012)
способ получения высокотемпературного сверхпроводника в системе магний-оксид магния -  патент 2471268 (27.12.2012)
композитная сверхпроводящая лента на основе соединения nb3sn -  патент 2436198 (10.12.2011)
композитная сверхпроводящая лента на основе соединения nb3sn -  патент 2436197 (10.12.2011)
высокотемпературный сверхпроводник на основе силицида лития -  патент 2351677 (10.04.2009)
составной комбинированный магнитный экран -  патент 2306635 (20.09.2007)
высокотемпературный сверхпроводник на основе фосфида лития и способ его изготовления -  патент 2267190 (27.12.2005)
способ формирования пленочного покрытия и устройство для его осуществления -  патент 2211881 (10.09.2003)
способ формирования пленочного покрытия и магнетронное устройство для его осуществления -  патент 2210619 (20.08.2003)
Наверх