способ создания композитной сегнетоэлектрической наноструктуры

Классы МПК:B82B3/00 Изготовление или обработка наноструктур
B82Y30/00 Нано-технология материалов или поверхностных эффектов, например нано-композиты
Автор(ы):, , ,
Патентообладатель(и):Сидоркин Александр Степанович (RU),
Поправко Надежда Геннадьевна (RU),
Рогазинская Ольга Владимировна (RU),
Миловидова Светлана Дмитриевна (RU)
Приоритеты:
подача заявки:
2012-06-18
публикация патента:

Изобретение относится к способам синтезирования новых материалов с заданными электрофизическими характеристиками и может быть применено для создания функциональных материалов с управляемыми характеристиками для нужд современной микро- и наноэлектроники. Технический результат изобретения - расширение температурного интервала существования сегнетоэлектрической фазы в сегнетоэлектрических композитных материалах на десятки градусов. Способ создания композитной сегнетоэлектрической наноструктуры, основанной на создании в композите эффекта внутреннего смещающего поля, заключается во внедрении сегнетоэлектрического материала, а именно триглицинсульфата, в пористую диэлектрическую матрицу с размерами пор порядка 10-100 нм. Внедрение производится из насыщенного водного раствора (расплава) сегнетоэлектрической соли, нагретого до температур, близких к температуре Кюри объемного сегнетоэлектрического материала, а величину внутреннего поля смещения, определяющего степень расширения температурного интервала существования сегнетоэлектрической фазы, варьируют за счет разности коэффициентов линейного расширения сегнетоэлектрика и материала матрицы, а также за счет общей площади взаимодействия сегнетоэлектрик - матрица, изменяемой путем выбора размеров и топологии пор матрицы. 3 з.п. ф-лы, 2 ил., 2 пр.

способ создания композитной сегнетоэлектрической наноструктуры, патент № 2509716 способ создания композитной сегнетоэлектрической наноструктуры, патент № 2509716

Формула изобретения

1. Способ создания композитной сегнетоэлектрической наноструктуры, основанной на создании в композите эффекта внутреннего смещающего поля, закрепляющего поляризованное состояние сегнетоэлектрического материала и смещающего точку фазового перехода, отличающийся тем, что внедряют сегнетоэлектрический материал в пористую диэлектрическую матрицу с размерами пор порядка 10-100 нм, внедрение производится из насыщенного водного раствора (расплава) сегнетоэлектрической соли, нагретого до температур, близких к температуре Кюри объемного сегнетоэлектрического материала, а величину внутреннего поля смещения, определяющего степень расширения температурного интервала существования сегнетоэлектрической фазы, варьируют за счет разности коэффициентов линейного расширения сегнетоэлектрика и материала матрицы, а также за счет общей площади взаимодействия сегнетоэлектрик - матрица, изменяемой путем выбора размеров и топологии пор матрицы.

2. Способ по п.1, отличающийся тем, что в качестве сегнетоэлектрического материала используют триглицинсульфат.

3. Способ по п.1, отличающийся тем, что в качестве диэлектрической матрицы используют пористый оксид алюминия с системой симметрично расположенных изолированных пор со средним диаметром около 40 нм.

4. Способ по п.1, отличающийся тем, что в качестве диэлектрической матрицы используют пористое стекло со средним диаметром пор 7 нм, пористая структура которого представляет собой трехмерную систему произвольно расположенных взаимосвязанных дендритных каналов.

Описание изобретения к патенту

Изобретение относится к способам синтезирования новых материалов с заданными электрофизическими характеристиками и может быть применено для создания функциональных материалов с управляемыми характеристиками для нужд современной микро- и наноэлектроники.

Известен способ получения сегнетоэлектрических структур на основе их монокристаллов путем внедрения в них примесей, приводящих к закреплению полярного состояния в определенных областях кристалла и, соответственно, к увеличению температуры фазового перехода (Levanyuk А.Р., Sigov A.S. Defects and Structural Phase Transitions. N.Y.: Gordon and Breach, 1988). Образование дефектной структуры в кристаллах при внедрении в них примесей замещения способствует закреплению спонтанной поляризации в отдельных областях объемного образца, то есть препятствует образованию симметричной парафазы выше температуры Кюри.

К недостатком данного способа относится невозможность создания достаточно высоких полей смещения, позволяющих изменять температуру фазового перехода на несколько градусов и более.

Известно, что воздействие подложки на виртуальный сегнетоэлектрик титанат стронция превращает его в реальный сегнетоэлектрик с достаточно высокой температурой фазового превращения (N.A.Pertsev, A.K.Tagantsev and N.Setter. Phase transitions and strain-induced ferroelectricity in SrTiO 3 epitaxial thin films, Phys.Rev. В 61, R825-R829, 2000).

Однако указанный способ относится к тонкопленочным материалам.

Наиболее близким является способ получения сегнетоэлектрических тонких пленок с увеличенным интервалом существования сегнетоэлектрической фазы при уменьшении их толщины меньше нескольких десятков нанометров (Bai F. Destruction of spin cycloid in (111) c-oriented BiFeO3 thin films by epitiaxial constraint: Enhanced polarization and release of latent magnetization / F.Bai, J.Wang, M.Wutting, J.F.Li, N.Wang, A.Pyatakov, A.K.Zvezdin, L.E.Cross, D.Viehland // Appl. Phys. Lett. - 2005. - V.86. - № 3. - P.032511(1-3)).

Наличие ограниченной площади соприкосновения пленки и подложки, а также заданная геометрия образца препятствует значительному расширению температурного интервала существования сегнетоэлектрической фазы, поскольку соотношение толщины пленки и площади границы пленка-подложка ограничивает максимальную величину внутренних полей смещения, закрепляющих поляризованное состояние материала.

Задачей заявляемого изобретения является получение функционального сегнетоэлектрического материала с заданными электрическими параметрами, в частности температурой сегнетоэлектрического фазового перехода.

Технический результат - расширение температурного интервала существования сегнетоэлектрической фазы в сегнетоэлектрических композитных материалах на десятки градусов.

Технический результат достигается тем, что в способе создания композитной сегнетоэлектрической наноструктуры, основанной на создании в композите эффекта внутреннего смещающего поля, закрепляющего поляризованное состояние сегнетоэлектрического материала и смещающего точку фазового перехода, согласно изобретению внедряют сегнетоэлектрический материал в пористую диэлектрическую матрицу с размерами пор порядка 10-100 нм, внедрение производится из насыщенного водного раствора (расплава) сегнетоэлектрической соли, нагретого до температур, близких к температуре Кюри объемного сегнетоэлектрического материала, а величину внутреннего поля смещения, определяющего степень расширения температурного интервала существования сегнетоэлектрической фазы, варьируют за счет разности коэффициентов линейного расширения сегнетоэлектрика и материала матрицы, а также за счет общей площади взаимодействия сегнетоэлектрик - матрица, изменяемой путем выбора размеров и топологии пор матрицы.

В качестве сегнетоэлектрического материала используют триглицинсульфат.

В качестве диэлектрической матрицы используют пористый оксид алюминия с системой симметрично расположенных изолированных пор со средним диаметром около 40 нм и плотностью распределения пор около 10 7 на см2 или пористое стекло со средним диаметром пор 7 нм и пористостью около 25%, пористая структура которого представляет собой трехмерную систему произвольно расположенных взаимосвязанных дендритных каналов.

Для получения смещения температуры сегнетоэлектрического фазового перехода в сторону низких температур необходимо добиться уменьшения степени взаимодействия сегнетоэлектрического материала с матрицей за счет выбора материала матрицы с наиболее близким к сегнетоэлектрику коэффициентом теплового расширения. В этом случае эффект деполяризующего поля, подавляющий сегнетоэлектрические свойства, будет превалировать над эффектом внутреннего поля смещения.

Полученный при осуществлении изобретения технический результат, а именно расширение температурного интервала существования сегнетоэлектрической фазы в сегнетоэлектрических композитных материалах на десятки градусов, достигается за счет того, что сегнетоэлектрический материал и материал матрицы имеют различные коэффициенты теплового расширения, вследствие чего при нагревании на границе сегнетоэлектрик - матрица возникают деформации несоответствия, порождающие внутреннее смещающее поле. Указанный эффект оказывает существенное влияние на температуру сегнетоэлектрического фазового перехода при размерах сегнетоэлектрических частиц порядка 10-100 нм.

На фиг.1 изображена поверхность матрицы пористого оксида алюминия Al2O3 с системой симметрично расположенных изолированных пор со средним диаметром около 40 нм. На фиг.2 изображена поверхность матрицы пористого стекла с системой взаимосвязанных дендритных каналов диаметром 7 нм.

Способ осуществляется в результате внедрения сегнетоэлектрического материала в пористую диэлектрическую матрицу со средним диаметром пор до 100 нм. Внедрение производится из насыщенного водного раствора (расплава) сегнетоэлектрической соли, нагретого до температур, близких к температуре Кюри объемного сегнетоэлектрического материала. При охлаждении до комнатной температуры в течение нескольких суток сегнетоэлектрик кристаллизуется в порах матрицы. В результате формируется композитная структура, состоящая из отдельных либо взаимосвязанных сегнетоэлектрических частиц (кристаллитов) в диэлектрической среде. При нагревании происходит взаимодействие кристаллитов TGS с окружающей матрицей. Рассогласование кристаллических решеток наночастиц и матрицы приводит к возникновению деформаций несоответствия и связанных с ними напряжений, которые можно оценить формулой способ создания композитной сегнетоэлектрической наноструктуры, патент № 2509716 , где Е - модуль Юнга сегнетоэлектрика, способ создания композитной сегнетоэлектрической наноструктуры, патент № 2509716 - его коэффициент Пуассона, af и as - коэффициенты линейного расширения кристаллитов и матрицы соответственно. Интеграл берется от температуры кристаллизации сегнетоэлектрических частиц в матрице до температуры измерений. Указанные напряжения за счет пьезоэффекта порождают внутреннее поле смещения, оцениваемое как способ создания композитной сегнетоэлектрической наноструктуры, патент № 2509716 (здесь d - пьезомодуль), которое и приводит к сдвигу точки Кюри в высокотемпературную область.

Пример 1. Композитная структура TGS - Al2O3, синтезированная на основе пористой матрицы оксида алюминия со средним диаметром пор 40 нм и плотностью распределения 107 на см 2. Пористая структура матрицы представляет собой систему симметрично расположенных по типу пчелиных сот изолированных цилиндрических каналов (фиг.1). При внедрении в поры триглицинсульфата формируются изолированные нанокристаллиты, симметрично расположенные относительно друг друга в диэлектрической среде. Смещение температуры фазового перехода для данного композитного состава достигает 15 К выше температуры Кюри объемного монокристалла триглицинсульфата (49°С).

Пример 2. Композитная структура TGS - SiO2, синтезированная на основе матрицы пористого стекла со средним диаметром пор 7 нм и пористостью около 25%. Пористая структура матрицы представляет собой трехмерную систему произвольно расположенных взаимосвязанных дендритных каналов (фиг.2). Таким образом, сегнетоэлектрические частицы, внедренные в матрицу такого типа, могут не только взаимодействовать друг с другом, но и образовывать кластерные структуры, свойства которых могут существенно отличаться от свойств изолированных частиц. Смещение температуры сегнетоэлектрического фазового перехода по указанному выше механизму в данном композите достигает 50-70 К выше температуры Кюри объемного монокристалла TGS.

Класс B82B3/00 Изготовление или обработка наноструктур

способ комбинированной интенсивной пластической деформации заготовок -  патент 2529604 (27.09.2014)
многослойный композиционный материал для защиты от электромагнитного излучения -  патент 2529494 (27.09.2014)
способ функционализации углеродных наноматериалов -  патент 2529217 (27.09.2014)
нанокомпонентная энергетическая добавка и жидкое углеводородное топливо -  патент 2529035 (27.09.2014)
способ получения насыщенных карбоновых кислот -  патент 2529026 (27.09.2014)
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ модифицирования углеродных нанотрубок -  патент 2528985 (20.09.2014)
полимерный медьсодержащий композит и способ его получения -  патент 2528981 (20.09.2014)
композиции матриксных носителей, способы и применения -  патент 2528895 (20.09.2014)
полимерное электрохромное устройство -  патент 2528841 (20.09.2014)

Класс B82Y30/00 Нано-технология материалов или поверхностных эффектов, например нано-композиты

способ получения железного порошка -  патент 2529129 (27.09.2014)
способ получения композиционных материалов на основе диоксида кремния -  патент 2528667 (20.09.2014)
режущая пластина -  патент 2528288 (10.09.2014)
способ получения термоэлектрического материала -  патент 2528280 (10.09.2014)
ветошь для чистки ствола огнестрельного оружия -  патент 2527577 (10.09.2014)
способ упрочнения металлических изделий с получением наноструктурированных поверхностных слоев -  патент 2527511 (10.09.2014)
способ получения наноматериала на основе рекомбинантных жгутиков археи halobacterium salinarum -  патент 2526514 (20.08.2014)
керамический композиционный материал на основе алюмокислородной керамики, структурированной наноструктурами tin -  патент 2526453 (20.08.2014)
нанокомпозит на основе никель-хром-молибден -  патент 2525878 (20.08.2014)
износостойкий композиционный керамический наноструктурированный материал и способ его получения -  патент 2525538 (20.08.2014)
Наверх