способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей (варианты)

Классы МПК:B01D53/047 адсорбция при переменном давлении
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" (RU)
Приоритеты:
подача заявки:
2012-09-04
публикация патента:

Изобретение относится к области химии и биотехнологии. Способ непрерывного выделения и концентрирования водорода из биосингаза, состоящего из пяти и более компонентов, включающий подачу биосингаза из реактора (пиролизного реактора или биореактора) с помощью компрессора в мембранный модуль для предконцентрирования водорода в пермеате или ретентате и последующую подачу пермеата (после дополнительного компремирования) или ретентата (без дополнительного компремирования) в блок короткоцикловой адсорбции с получением на выходе концентрата водорода. При этом мембраны с селективностью H2/CO2>1 используют для предконцентрирования водорода в виде пермеата; мембраны с селективностью H2 /CO2<1 используют для предконцентрирования водорода в виде ретентата. Технический результат заключается в обеспечении возможности выделения водорода из биогаза и возможности длительного применения мембраны. 2 н.п. ф-лы, 5 ил., 1 табл.

способ мембранно-адсорбционного концентрирования водорода из   обедненных газовых смесей (варианты), патент № 2509595 способ мембранно-адсорбционного концентрирования водорода из   обедненных газовых смесей (варианты), патент № 2509595 способ мембранно-адсорбционного концентрирования водорода из   обедненных газовых смесей (варианты), патент № 2509595 способ мембранно-адсорбционного концентрирования водорода из   обедненных газовых смесей (варианты), патент № 2509595 способ мембранно-адсорбционного концентрирования водорода из   обедненных газовых смесей (варианты), патент № 2509595

Формула изобретения

1. Способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, отличающийся тем, что в качестве смеси газов используют биосинтезгаз, осуществляют его сжатие до мембранного предконцентрирования с последующим сжатием пермеата перед блоком короткоцикловой адсорбции КЦА, при этом отводят ретентат после разделения газовой смеси на мембране с селективностью Н2/CO2>1.

2. Способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, отличающийся тем, что в качестве смеси газов используют биосинтезгаз, осуществляют его сжатие до мембранного предконцентрирования с последующим отводом пермеата, и подачей ретентата в блок короткоцикловой адсорбции КЦА, при этом селективность мембраны должна быть H2/CO 2<1.

Описание изобретения к патенту

Изобретение относится к области химии и биотехнологии, а именно разделению газовых смесей, и может применяться в различных отраслях промышленности, энергетики и сельского хозяйства. Особое применение способа предназначено для концентрирования водорода из биосингаза, состав которого варьируется в зависимости от условий пиролиза и сырья: Н2 (25-45%), СН4 (~1%), CO (25-42%), CO2 (10-35%), N2 (2-5%) H 2S(~1). Одним из процессов разделения газовых смесей, еще ограниченно применяемым в промышленных масштабах, являются мембранное разделение и короткоцикловая адсорбция (КЦА). Мембранный процесс газоразделения достаточно эффективно применяется для получения азота из воздуха; обогащения воздуха кислородом, концентрирования водорода из смесей с содержание Н2>50%, удаления CO2 из биогаза и природного газа [Richard W. Baker. Membrane technology and application. - 2nd ed. - California, USA: John Wiley &Sons, Ltd, 2004. - 538 p.]. Процессы короткоцикловой адсорбции известны достаточно давно [Skarstrom С.W. Method and apparatus for fractionating gaseous mixtures by adsorption. US Pat. 2,944,627 (1960)] и позволяют разделять смеси газов с различной адсорбционной способностью, включая водород-содержащие газовые смеси, причем эффективность разделения экономически оправдана только при исходном содержании водорода >60% [Ritter J.A., A.D.Ebner. State-of-the-Art Adsorption and Membrane Separation Processes for Hydrogen Production in the Chemical and Petrochemical Industries // Separation Science and Technology. - 2007. - № 42 (6). - С.1123-1193]. Перспективность применения описанных выше процессов принципиально оправдана тем, что в обоих случаях нет затрат на фазовые переходы (как, например, в криогенных технологиях), способы характеризуются малой энергоемкостью, безреагентностью, достаточной компактностью оборудования, достаточной простотой управления и масштабирования.

Мембранное разделение газовых смесей по принципу «диффузионной растворимости» заключается в том, что разделяемая смесь (сырье - питающий поток) приводится в контакт с одной стороной селективно проницаемой непористой мембраны, при этом проникшая через мембрану смесь (пермеат) обогащена легко-проницаемым компонентом, а непроникшая через мембрану смесь (ретентат) - обогащена труднопроницаемым компонентом.

На практике движущей силой процесса является градиент концентрации (градиент парциального давления), который достигается одним из методов по тангенциальной схеме (фиг.1):

- либо подачей питающей смеси в мембранный модуль (до мембраны) при повышенных давлениях и отвода пермеата при атмосферном давлении;

- либо подачей питающей смеси в мембранный модуль (до мембраны) при повышенных давлениях и отвода пермеата вакуумированием;

- либо подачей питающей смеси в мембранный модуль (до мембраны) при атмосферном давлении и отвода пермеата вакуумированием;

Последний из указанных методов обычно применяют в лабораторных исследованиях. Отметим, что выбор полимерной мембраны происходит чисто эмпирически - по известным газоразделительным свойствам полимера селективного слоя. Как правило, эти данные очень ограничены и не охватывают все многообразие пенетрантов (компонентов смеси), например, биосингаза; если водород-содержащие смеси содержат CO2, то и водород и CO2 (их проницаемости близки) накапливаются в пермеате и концентрирования водорода в чистом виде не происходит.

Известен способ, включающий стадию КЦА и последующее мембранное разделения для разделения смесей водорода и углеводородов (см. патент США 6,183,628, от 6 февраля 2001 года). Здесь КЦА отводится роль предконцентратора для водорода, так как водород относится к несорбируемым газам, а углеводороды - к сильносорбируемым газам. Мембраны усиливают концентрирование водорода за счет того, что мембраны являются углеводород-селективными. Отделить водород от CO2 по такой схеме не представляется возможным, поскольку при наличии в смеси CO2 этот компонент должен скапливаться в углеводородной фракции, а CO2 и H 2 мембранами не разделяются и тем более такой метод не подходит к выделению водорода из биосингаза, где углеводороды не представлены.

Наиболее близким к заявленному является способ очистки газообразного водорода из газовой смеси, содержащей незначительное количество водорода, с помощью системы, включающей этап мембранного разделения и этап короткоцикловой адсорбции (КЦА). В соответствии с изобретением данная система очистки работает на одном компрессоре, который обеспечивает одновременно сжатие пермеата, обогащенного водородом, между этапом мембранного разделения и этапом КЦА (PSA) и сжатие газа регенерации, выходящего из устройства КЦА (PSA) до его рециклинга (Патент № 2904821, Франция, МПК C01B 3/56, опубл. 15.02.2008).

Однако данное техническое решение не предназначено к выделению и концентрированию водорода из биосингаза (биосингаз получают при небольших давлениях), так как не оговариваются разделительные свойства мембраны: водород может концентрироваться как пермеате, так и в ретентате и, кроме того, не ясно, где будет концентрироваться CO2 как балластный компонент. Более того, не ясно, где будут концентрироваться другие компоненты биосингаза.

Задача изобретения состоит в том, чтобы обеспечить выделение водорода из биосингаза для дальнейшего использования в качестве энергоносителя, получаемого из трудно-перерабатываемой биомассы. Предлагаемый способ предполагает длительное рабочее применение, так как и мембрана и КЦА известны тем, что срок их действия без замены мембраны и/или адсорбента составляет не менее 10 лет.

Для решения указанной задачи предложены два варианта способа непрерывного выделения и концентрирования водорода из биосингаза общего состава Н2 (25-45%), СН4 (-1%), CO (25-42%), CO2 (10-35%), N 2 (2-5%) H2S (~1) мембранно-сорбционным методом, включающим мембранное предконцентрирование водорода и последующее выделение водорода с помощью коротко-цикловой адсорбции.

Предложен способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий, стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, при этом, в качестве смеси газов используют биосингаз, осуществляют его сжатие до мембранного предконцентрирования с последующим сжатием пермеата перед блоком короткоцикловой адсорбции КЦА, при этом отводят ретентат после разделения газовой смеси на мембране с селективностью H2/CO2>1.

Также предложен способ мембранно-адсорбционного концентрирования водорода из обедненных газовых смесей, включающий, стадии сжатия потока газовых смесей, мембранного предконцентрирования водорода, и концентрирования водорода в блоке короткоцикловой адсорбции КЦА с последующим отводом водорода потребителю, при этом в качестве смеси газов используют биосингаз, осуществляют его сжатие до мембранного предконцентрирования с последующим отводом пермеата, и подачей ретентата в блок короткоцикловой адсорбции КЦА, при этом селективность мембраны должна быть H2/CO2<1.

На фигуре 1 показана тангенциальная схема работы мембранного модуля.

На Фигуре 2 дана зависимость концентрации H2 в пермеате от степени тбора (способ мембранно-адсорбционного концентрирования водорода из   обедненных газовых смесей (варианты), патент № 2509595 ) при разделении биосингаза различными мембранами.

На Фигуре 3 дана зависимость степени извлечения (б) от степени отбора (способ мембранно-адсорбционного концентрирования водорода из   обедненных газовых смесей (варианты), патент № 2509595 ) при разделении биосингаза различными мембранами.

На Фигуре 4 показана схема мембранного предконцентрирования водорода в пермеате после реактора по переработке вторичных отходов с последующей подачей на блок КЦА для получения концентрата водорода.

На Фигуре 5 показана схема мембранного предконцентрирования водорода в ретентате после реактора по переработке вторичных отходов с последующей подачей на блок КЦА для получения концентрата водорода.

На фигурах позициями обозначены:

1 - биореактор для переработки биомассы,

2, 6 - компрессор,

3 - мембранный модуль,

4 - ретентат

5 - пермеат

7 - блок КЦА,

8 - водород.

Способ осуществляется следующим образом.

В первом варианте биосингаз из реактора по переработке вторичных отходов 1 направляют в компрессор 2, осуществляя сжатие биосингаза, далее в мембранном блоке 3 происходит разделение смеси на мембране с селективностью H 2/CO2>1, после чего ретентат 4 отводят из мембранного блока 3, а перметат сжимают в компрессоре 6 и направляют в блок КЦА 7, где происходит концентрирование водорода с последующим отводом его потребителю 8.

Во втором варианте биосингаз из реактора по переработке вторичных отходов 1 направляют в компрессор 2, осуществляя сжатие биосингаза, далее в мембранном блоке 3 происходит разделение смеси на мембране с селективностью H2/CO2<1, после чего пермеат 5 отводят из мембранного блока 3, а ретентат 4 направляют в блок КЦА 7 для дальнейшего концентрирования водорода и отвода его потребителю 8.

При реализации способа были исследованы газоразделительные свойства мембран, данные сведены в таблицу.

Таблица
Вид мембраныГаз, Q, л/(м 2·час·атм)
GENERON®H2 HeCO2 O2 SO2H2S N2CO CH4C3H8
160180 4513,6 10,3141 1,81,61 1,30,11
ПВТМС20001800 1600450 100013501 1201501 22040
AIR PRODUCTS®151 151104 22,747,51 14,2813,8 6,66,37,25 1
СИЛАР® 440250 20004002570 1195190 2705452818 1

Из таблицы видно, что, например, мембраны GENERON® обладают небольшой положительной селективностью Н2/CO2>1; мембраны СИЛАР - небольшой отрицательной селективностью Н2/CO 2<1. В первом случае мембранный блок лучше использовать для предконцентрирования водорода в виде пермеата, а во-втором случае - в виде ретентата.

На Фиг.2 и 3 приведены примеры использования мембранного блока для предконцентрирования водорода в виде пермеата (мембраны GENERON®, ПВТМС, AIR PRODUCTS®) и виде ретентата (мембраны СИЛАР®). Видно, что в ретентате концентрация водорода может достигать минимально необходимые 50% при степенях отбора ~0.7. В других вариантах во всех случаях концентрация водорода >50%. Сравнительные зависимости построены по методике Тепляков В.В., Малых О.В., Амосова О.Л., Ястребов Р.А. Программа для ЭВМ «Расчет мембранного разделения многокомпонентных газовых смесей с использованием базы данных по мембранам с функцией расчетной оценки недостающих экспериментальных величин. Свидетельство № 2011615930 от 28 июля 2011 с использованием доступных экспериментальных данных по газопроницаемости коммерческих полимерных мембран.

Таким образом, предложение позволит достичь концентрирования водорода из биосингаза с технической чистотой (до 98%) независимо от его содержания в исходном сырье в пределах 10-40% с возможностью реализации промышленного применения способа.

Класс B01D53/047 адсорбция при переменном давлении

способ и устройство для отделения газообразного компонента -  патент 2519482 (10.06.2014)
системы и способы для переработки водорода и моноксида углерода -  патент 2507240 (20.02.2014)
способ и устройство для отделения водорода от газовых потоков путем короткоцикловой адсорбции -  патент 2471537 (10.01.2013)
способ выделения водорода из газовой смеси -  патент 2466928 (20.11.2012)
адсорбционно-мембранный способ разделения газовых смесей -  патент 2443461 (27.02.2012)
способ очистки газов -  патент 2401799 (20.10.2010)
адсорбер -  патент 2257944 (10.08.2005)
способ разделения газа переменного состава короткоцикловой безнагревной адсорбцией -  патент 2169605 (27.06.2001)
Наверх