цеолитсодержащий катализатор, способ его получения и способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола

Классы МПК:B01J29/40 типа пентасила, например ZSM-5, ZSM-8 или ZSM-11, приведенные в патентных документах USA 3702886; GBA 1334243 и USA 3709979 соответственно
B01J23/31 в сочетании с висмутом
B01J23/75 кобальт
B01J23/84 с мышьяком, сурьмой, висмутом, ванадием, ниобием, танталом, полонием, хромом, молибденом, вольфрамом, марганцем, технецием или рением
B01J27/185 с металлами группы железа или платины
B01J27/186 с мышьяком, сурьмой, висмутом, ванадием, ниобием, танталом, полонием, хромом, молибденом, вольфрамом, марганцем, технецием или рением
B01J37/02 пропитывание, покрытие или осаждение
C10G35/095 содержащими кристаллические алюмосиликаты, например молекулярные сита
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)
Приоритеты:
подача заявки:
2012-07-17
публикация патента:

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности к способам получения катализаторов превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола. Описан катализатор, содержащий, мас.%: высококремнеземный цеолит типа H-ZSM-5 с силикатным модулем SiO2/Al2O3=30-50 - 94,0-99,0, молибдовисмутат или молибдофосфат кобальта - 1,0-6,0, сформированный в процессе термообработки. Описан способ получения катализатора, включающий гидротермальную кристаллизацию реакционной смеси при 120-180°С, содержащей источники окисей кремния, алюминия и щелочного металла, гексаметилендиамин и воду с последующей сушкой и прокаливанием, механохимической обработкой в вибромельнице, формовкой и с дальнейшей пропиткой Н-формы высококремнеземного цеолита типа Н-ZSM-5 с силикатным модулем SiO2/Al 2O3=30÷50 солянокислыми растворами соответствующих гетерополисоединений: молибдовисмутата кобальта или молибдофосфата кобальта, в качестве модифицирующей добавки, с последующей механохимической обработкой в вибромельнице в течение 0,1÷24 ч, формовкой катализаторной массы в гранулы, сушкой и прокалкой при 540÷550°С в течение 0,1÷12 ч. Описан способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола в присутствии описанного выше катализатора при 350÷425°С, объемной скорости 1,0÷2,0 ч -1 и давлении 0,1÷1,0 МПа. Технический эффект - увеличение активности и селективности катализатора. 3 н.п. ф-лы, 1 табл., 7 пр.

Формула изобретения

1. Цеолитсодержащий катализатор для превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола, отличающийся тем, что он содержит высококремнеземный цеолит типа H-ZSM-5 с силикатным модулем SiO2/Al 2O3=30÷50, в качестве модифицирующего компонента содержит гетерополисоединения на основе: молибдовисмутата или молибдофосфата кобальта в количестве 1,0÷6,0 мас.%; катализатор сформирован в процессе термообработки и имеет следующий состав, мас.%:

Высококремнеземный цеолит типа H-ZSM-5 с силикатным модулем SiO2/Al2O3 =30÷5094,0÷99,0
Молибдовисмутат или молибдофосфат кобальта 1,0÷6,0

2. Способ получения цеолитсодержащего катализатора по п.1, отличающийся тем, что высококремнеземный цеолит типа H-ZSM-5 с силикатным модулем SiO2/Al2O3=30÷50 получают гидротермальной кристаллизацией реакционной смеси при 120÷180°С в течение 1÷6 сут., содержащей источники окиси кремния, окиси алюминия, окиси щелочного металла, гексаметилендиамин и воду, с последующей сушкой при 100÷110°С в течение 2÷4 ч, прокалкой при 550÷600°С 6÷8 ч, механохимической обработкой в вибромельнице в течение 0,1÷12 ч, формовкой катализаторной массы и с дальнейшей пропиткой катализаторной массы H-ZSM-5 солянокислыми растворами гетерополисоединений: молибдовисмутата или молибдофосфата кобальта в количестве 1,0÷6,0 мас.%, с последующей сушкой при 100÷110°С в течение 2÷4 ч и прокалкой при 540÷550°С 8-12 ч.

3. Способ превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола в присутствии катализатора, отличающийся тем, что используют катализатор по п.1 и процесс превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола проводят при 350÷425°С, объемной скорости 1,0÷2,0 ч-1 и давлении 0,1÷1,0 МПа.

Описание изобретения к патенту

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности, в частности, к способам получения катализаторов для превращения прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола.

Основным промышленным процессом получения высокооктановых бензинов и ароматических углеводородов является каталитический риформинг прямогонных бензиновых фракций на модифицированных алюмоплатиновых катализаторах, который проводится при высоких температурах 450÷570°С, высоком давлении 0,1÷3,5 МПа и в среде водородсодержащего газа. Недостатками процесса каталитического риформинга прямогонных бензинов являются высокая температура и давление процесса, использование дорогостоящего Pt - содержащего катализатора, водородсодержащего газа и повышенное содержание бензола и ароматических углеводородов в продуктах реакции.

Известен способ приготовления катализатора для олигомеризации и ароматизации низкомолекулярных углеводородов С2÷С12, содержащий цеолит семейства пентасил с силикатным модулем SiO2/Al 2O3=20÷80, модифицированный оксидом цинка, платиной и оксидом бора, связующее вещество - оксид алюминия (Пат. RU № 2144845, B01J 29/44, C10G 35/095, 1998).

Недостатками данного катализатора являются использование дорогостоящего Pt - модификатора и не высокий выход 34,7 мас.% жидких продуктов реакции превращения ШФЛУ при 600°С.

Известен способ получения катализатора для превращения низкомолекулярных углеводородов в высокооктановый бензин или ароматические углеводороды, содержащий цеолит семейства пентасил с силикатным модулем SiO 2/Al2O3=20÷80, модифицированный оксидом цинка, платиной и оксидом фосфора, связующее вещество - оксид алюминия (Пат. RU № 2144846, B01J 29/44, C10G 35/095, 1998).

Недостатками данного катализатора являются использование дорогостоящего Pt - модификатора и не высокий выход 54,2 мас.% жидких продуктов реакции превращения ШФЛУ при 600°С.

Известен способ получения высокооктанового бензина с низким содержанием бензола из сырья, включающий каталитический риформинг бензинового сырья с получением катализата, выделение из катализата водородсодержащего газа и выделение из полученного нестабильного продукта риформинга высокооктанового бензина и газов стабилизации (Пат. RU № 2213124, C10G 35/095, 59/02, 2002).

Затем из высокооктанового катализата выделяют бензиновую фракцию, содержащую более 5,0 мас.% бензола и алифатические углеводороды, и осуществляют ее контакт с катализатором, включающим цеолит группы пентасилов, в условиях образования ароматических углеводородов из алифатических компонентов фракции и превращения хотя бы части бензола, и полученный продукт смешивают с нестабильным продуктом риформинга.

Недостатками данного способа являются многостадийность и сложность проведения процесса получения высокооктановых бензинов.

Известен цеолитный катализатор и способ превращения прямогонной бензиновой фракции нефти в высокооктановый компонент бензина (Пат. RU № 2323778, B01J 29/42, 2006). Катализатор содержит высококремнеземный цеолит с мольным отношением SiO2/Al2O 3=60 с остаточным содержанием Na2O не более 0,02 мас.%, модифицированный металлами Pt, Ni, Zn или Fe, которые входят в состав катализатора в виде наноразмерных порошков и их содержание составляет не более 1,5 мас.%.

Способ превращения бензиновой фракции нефти в высокооктановый компонент бензина осуществляется путем контакта их с катализатором при 300÷400°С, атмосферном давлении и нагрузке катализатора по сырью 2,0 ч-1.

Недостатком данного способа является достаточно высокое содержание ароматических углеводородов в катализате.

Известен катализатор для превращения алифатических углеводородов C2÷C 12, способ его получения и способ превращения алифатических углеводородов C2÷C12 в высокооктановый бензин и/или ароматические углеводороды (Пат. RU № 2235590, B01J 29/46, 2003). Катализатор содержит железоалюмосиликат со структурой цеолита типа H-ZSM-5 с силикатным модулем SiO 2/Al2O3=20÷160, SiO2 /Fe2O3=30÷5000, который получают гидротермальной кристаллизацией реакционной смеси при 120-180°С в течение 1÷6 сут, содержащей источники окиси кремния, окиси алюминия, окиси щелочного металла, гексаметилендиамин и воду, с дальнейшим смешением железоалюмосиликата с соединениями модифицирующих металлов, упрочняющих добавок и связующим, с последующей механохимической обработкой, формовкой катализаторной массы, сушкой и прокалкой. В качестве модифицирующего компонента содержит по крайней мере один оксид элемента, выбранный из группы медь, цинк, галлий, лантан, молибден, рений в количестве 0,1÷10,0 мас.%.

Способ превращения алифатических углеводородов C 2÷C12 в высокооктановый бензин и/или ароматические углеводороды в присутствии катализатора проводят при 300÷550°С, объемной скорости 0,5÷5,0 ч-1 и давлении 0,1÷1,5 МПа.

Недостатком данного способа является высокое содержание бензола и ароматических углеводородов в катализате.

Наиболее близким по сущности техническим решением является цеолитсодержащий катализатор, способ его получения и способ конверсии прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола, принятый за прототип, (Пат. RU № 2446882, B01J 29/40, 2010). Цеолитсодержащий катализатор содержит высококремнеземный цеолит типа H-ZSM-5 с силикатным модулем SiO2/Al2O3=30÷50, в качестве модифицирующего компонента содержит металл, по крайней мере, один из группы: медь, вольфрам, молибден, введенный в высококремнеземный цеолит в виде наноразмерных порошков металлов, в количестве 1,0÷3,0 мас.%; катализатор сформирован в процессе термообработки.

Цеолитсодержащий катализатор получают гидротермальной кристаллизацией реакционной смеси при 120-180°С в течение 1÷6 сут, содержащей источники окиси кремния, окиси алюминия, окиси щелочного металла, гексаметилендиамин и воду, с дальнейшим смешением высококремнеземного цеолита с наноразмерными порошками металлов, полученных методом электрического взрыва проволоки металла в среде инертного газа аргона, последующей механохимической обработкой, формовкой катализаторной массы, сушкой и прокалкой.

Способ конверсии прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола в присутствии катализатора проводят при 350÷425°С, объемной скорости 1,0÷2,0 ч-1 и давлении 0,1÷1,0 МПа.

Недостатком способа, принятого за прототип, является не достаточно высокий выход высокооктанового компонента бензина в продуктах реакции.

Задача изобретения - получение активного и селективного катализатора для процесса превращения прямогонных бензиновых фракций в высокооктановый компонент бензина с низким содержанием бензола.

Технический результат достигается тем, что предлагаемый цеолитсодержащий катализатор для переработки прямогонной бензиновой фракции в высокооктановый компонент бензина с низким содержанием бензола получают механохимической обработкой Н-формы высококремнеземного цеолита типа H-ZSM-5 с силикатным модулем SiO2/Al 2O3=30÷50 в вибромельнице в течение 0,1÷24 ч, формовкой катализаторной массы в гранулы, сушкой и пропиткой катализаторной массы солянокислыми растворами соответствующих гетерополисоединений: молибдовисмутата кобальта или молибдофосфата кобальта, в качестве модифицирующей добавки, в количестве 1,0÷6,0 мас.%, с последующей сушкой и катализатор сформирован в процессе термообработки при 540÷550°С в течение 0,1÷12 ч.

Под действием механохимической и высокотемпературной обработок цеолита с нанесенными гетерополисоединениями: молибдовисмутата кобальта или молибдофосфата кобальта происходит модифицирование высококремнеземного цеолита H-ZSM-5 активными компонентами гетерополисоединений: молибдовисмутата кобальта или молибдофосфата кобальта, формирование и образование активного и селективного катализатора.

Предлагаемое изобретение иллюстрируется следующими примерами.

Пример 1. (по прототипу). К 200 г жидкого стекла (29% SiO2, 9% Na2O, 62% H2O) при перемешивании добавляют 11,8 г гексаметилендиамина (R) в 100 мл H2O, 24,15 г Al(NO3)3 ·9H2O в 160 мл H2O, 1 г "затравки" высококремнеземного цеолита и приливают 0,1 н раствор HNO 3. Полученную смесь загружают в автоклавы из нержавеющей стали, нагревают до 175÷180°С и выдерживают при перемешивании 2÷6 сут, а затем охлаждают. Синтезированный продукт промывают водой, сушат и прокаливают при 550÷600°С 12 ч. Для перевода в Н-форму цеолиты декатионируют обработкой 25% раствором NH4Cl (10 мл раствора на 1 г цеолита) при 90°С 2 ч, затем промывают водой, сушат при 110°С и прокаливают при 540°С 6 ч. Получают H-ZSM-5 с силикатным модулем SiO 2/Al2O3=30, степень кристалличности продукта 96%.

Затем 10 г H-ZSM-5 с силикатным модулем SiO2/Al2O3=30 подвергают механохимической обработке в вибромельнице 8 ч, после этого катализаторную массу формуют в гранулы, сушат 2 ч при 20÷30°С, затем при 110°С 4 ч и прокаливают 8 ч при 540÷550°С.

Пример 2. (по прототипу). H-ZSM-5 с силикатным модулем SiO2/Al2O3=50 получают так же, как в примере 1, но вместо 24,15 г Al(NO3)3 ·9H2O берут 14,475 г Al(NO3)3 ·9H2O.

Затем 9,9 г H-ZSM-5 с силикатным модулем SiO2/Al2O3=50 смешивают с 0,1 г наноразмерным порошком (НРП) Мо и подвергают механохимической обработке в вибромельнице 4 ч. Полученную катализаторную массу формуют в гранулы, сушат 2 ч при 110°С и прокаливают 8 ч при 540÷550°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O 3=50)- 99,0;
Мо- 1,0

Пример 3. Так же, как в примере 2, но вместо 9,9 г H-ZSM-5 берут 3,96 г H-ZSM-5 с силикатным модулем SiO2/Al2 O3=50 и пропитывают гранулы цеолита солянокислым раствором, в котором растворены 0,04 г гетерополисоединения (ГПС) кристаллогидрата молибдовисмутата кобальта [Co[H3BiMo12O 40]·13H2O]·12H2O по влагоемкости цеолита. Пропитку цеолита проводят при 40÷50°С и перемешивании 2 ч, после чего цеолит сушат при 110°С 6 ч и прокаливают 8 ч при 540÷550°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O 3=50)- 99,0;
ГПС кристаллогидрат молибдовисмутата кобальта - 1,0

Пример 4. Так же, как в примере 3, но вместо 3,96 г H-ZSM-5 берут 3,92 г Н-ZSM-5 с силикатным модулем SiO2/Al2O3 =50 и пропитывают гранулы цеолита солянокислым раствором, в котором растворены 0,08 г гетерополисоединения (ГПС) кристаллогидрата молибдовисмутата кобальта [Со[H3BiMo12O 40]·13H2O]·12H2O по влагоемкости цеолита. Пропитку цеолита проводят при 40÷50°С и перемешивании 3 ч, после чего цеолит сушат при 110°С 4 ч и прокаливают 8 ч при 540÷550°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O 3=50)- 98,0;
ГПС кристаллогидрат молибдовисмутата кобальта - 2,0.

Пример 5. Так же, как в примере 3, но вместо 3,96 г H-ZSM-5 берут 3,76 г Н-ZSM-5 с силикатным модулем SiO2/Al2O3 =50 и пропитывают гранулы цеолита солянокислым раствором, в котором растворены 0,24 г гетерополисоединения (ГПС) кристаллогидрата молибдовисмутата кобальта [Co[H3BiMo12O 40]·13H2O]·12H2O по влагоемкости цеолита. Пропитку цеолита проводят при 40÷0°С и перемешивании 2 ч, после чего цеолит сушат при 110°С 6 ч и прокаливают 8 ч при 540÷550°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O 3= 50)- 94,0;
ГПС кристаллогидрат молибдовисмутата кобальта - 6,0.

Пример 6. Так же, как в примере 2, но вместо 9,9 г H-ZSM-5 берут 3,96 г H-ZSM-5 с силикатным модулем SiO2/Al2O3=50 и пропитывают гранулы цеолита солянокислым раствором, в котором растворены 0,04 г гетерополисоединения (ГПС) кристаллогидрата молибдофосфата кобальта [Со3[PMo12O40]·14H 2O по влагоемкости цеолита. Пропитку цеолита проводят при 40÷50°С и перемешивании 2 ч, после чего цеолит сушат при 110°С 4 ч и прокаливают 8 ч при 540÷550°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O 3=50)- 99,0;
ГПС кристаллогидрат молибдофосфата кобальта - 1,0.

Пример 7. Так же, как в примере 6, но вместо 9,9 г H-ZSM-5 берут 3,76 г H-ZSM-5 с силикатным модулем SiO2/Al2O3=50 и пропитывают гранулы цеолита солянокислым раствором, в котором растворены 0,24 г гетерополисоединения (ГПС) кристаллогидрата молибдофосфата кобальта [Co3[PMo12O40]·14H 2O по влагоемкости цеолита. Пропитку цеолита проводят при 40÷50°С и перемешивании 3 ч, после чего цеолит сушат при 100°С 4 ч и прокаливают 8 ч при 540÷550°С.

Полученный цеолитсодержащий катализатор имеет состав, мас.%:

H-ZSM-5 (SiO2/Al2O 3=50)- 94,0;
ГПС кристаллогидрат молибдофосфата кобальта - 6,0.

Полученные катализаторы испытывают в процессе превращения алифатических углеводородов (прямогонной бензиновой фракции 40÷185°С) в высокооктановый компонент бензина на автоматизированной установке проточного типа со стационарным слоем катализатора при температурах 350÷425°С, объемной скорости подачи сырья 1,0÷2,0 ч-1 и давлении 0,1÷1,0 МПа.

В процессе превращения смеси алифатических углеводородов (прямогонной бензиновой фракции 40÷185°С) с повышением температуры реакции от 350 до 425°С на высококремнеземном цеолите типа H-ZSM-5 протекают реакции крекинга, дегидрирования, изомеризации, дегидроциклизации и ароматизации парафиновых углеводородов с образованием преимущественно на первых стадиях процесса олефиновых углеводородов, которые в дальнейшем превращаются в изопарафиновые и алкилароматические углеводороды.

Введение в высококремнеземный цеолит типа H-ZSM-5 модифицирующих добавок в виде гетерополисоединений: молибдовисмутата или молибдофосфата кобальта в количестве 1,0÷6,0 мас.% позволяет значительно повысить выход высокооктанового компонента бензина, выход алкилароматических углеводородов и понизить выход бензола до 1,0÷2,0 мас.% из прямогонных бензиновых фракций, по сравнению с не модифицированным цеолитом.

Приведенные в таблице примеры уточняют изобретение, не ограничивая его.

Как видно из примеров катализаторов 1÷7 таблицы катализаторы 3÷7 имеют более высокий выход (60÷82%) жидких продуктов реакции - высокооктанового бензина из прямогонных бензиновых фракций, чем катализаторы по прототипу (примеры 1 и 2).

Таким образом, предлагаемые катализаторы для превращения алифатических углеводородов прямогонной бензиновой фракции в высокооктановый компонент бензина и ароматические углеводороды на основе высококремнеземного цеолита типа H-ZSM-5 с силикатным модулем SiO2/Al2O3=30-50 и модифицированные гетерополисоединениями: молибдовисмутата или молибдофосфата кобальта в количестве 1,0÷6,0 мас.% позволяют увеличить выход высокооктанового бензина до 60÷82% и выход алкилароматических углеводородов из алифатических углеводородов прямогонной бензиновой фракции 40÷185°С и понизить содержание бензола в катализате до 1,0÷2,0 мас.%.

Предварительная механохимическая активация высококремнеземного цеолита типа H-ZSM-5, введение в цеолит гетерополисоединений молибдовисмутата или молибдофосфата кобальта в количестве 1,0÷6,0 мас.% и последующая сушка и прокалка при 540÷550°С приводит к формированию активных компонентов из гетерополисоединений молибдовисмутата или молибдофосфата кобальта на поверхности цеолита и позволяет получить высокодисперсный, активный и селективный катализатор. Введение в цеолит гетерополисоединений молибдовисмутата или молибдофосфата кобальта в количестве 1,0÷6,0 мас.% позволяет увеличить выход высокооктанового бензина до 60÷82% и выход алкилароматических углеводородов из алифатических углеводородов прямогонной бензиновой фракции.

Способ получения высокооктанового компонента бензина с низким содержанием бензола из прямогонной бензиновой фракции в присутствии катализаторов на основе высококремнеземного цеолита типа H-ZSM-5 с силикатным модулем SiO2/Al2O3=30÷50 и модифицированный гетерополисоединениями: молибдовисмутата или молибдофосфата кобальта в количестве 1,0÷6,0 мас.%, позволяют увеличить выход высокооктанового бензина и выход алкилароматических углеводородов из алифатических углеводородов прямогонной бензиновой фракции 40÷185°С, чем в присутствии катализатора по прототипу (пример 1-2).

Таблица
Превращение прямогонной бензиновой фракции на цеолитсодержащих катализаторах
Пример катализатора, № Tp, °C V, ч-1 Выход продуктов, мас.% Расчетное октановое число, ИМ
газовая фазажидкая фазабензоларены
1350 2,034,965,1 1,221,892,3
(по прототипу пат. RU № 2446882)375 2,036,863,2 1,523,494,7
4002,0 42,957,12,8 26,795,5
4252,045,1 54,93,631,5 96,5
2350 2,022,2 77,80,817,6 91,9
(по прототипу пат. RU № 2446882)375 2,030,469,6 1,423,194,4
4002,0 37,362,71,8 27,795,2
4252,041,8 58,22,032,7 96,8
3 3502,033,8 66,21,123,2 93,0
3752,0 34,765,3 1,325,894,6
4002,0 39,360,72,3 29,496,1
4252,040,4 59,63,031,7 96,8
4 3502,031,3 68,71,225,2 94,5
3752,0 32,967,1 1,728,996,4
4002,0 35,065,02,0 31,997,1
4252,037,0 63,02,432,5 98,2
5 3502,019,0 81,00,820,4 91,9
3501,0 27,572,5 1,325,193,5
3752,0 23,276,81,1 23,292,9
4002,027,5 72,51,425,1 93,6
4252,0 29,470,6 1,525,593,8
6350 2,017,6 82,40,819,5 91,9
3752,0 21,778,3 1,122,092,9
4002,0 26,173,91,4 24,394,4
4252,034,6 65,41,931,8 96,8
7 3502,012,4 87,60,616,0 88,8
3752,0 18,681,4 0,818,390,5
4002,0 22,577,51,1 20,991,8
4001,026,7 73,31,422,1 92,9
4252,0 27,372,7 1,523,593,4

Класс B01J29/40 типа пентасила, например ZSM-5, ZSM-8 или ZSM-11, приведенные в патентных документах USA 3702886; GBA 1334243 и USA 3709979 соответственно

катализатор и способ синтеза олефинов из диметилового эфира в его присутствии -  патент 2518091 (10.06.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
получение ароматических соединений из метана -  патент 2514915 (10.05.2014)
способ одновременного получения ароматических углеводородов и дивинила в присутствии инициатора пероксида водорода -  патент 2509759 (20.03.2014)
цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола -  патент 2498853 (20.11.2013)
способ одновременного получения ароматических углеводородов и дивинила -  патент 2495017 (10.10.2013)
гетерогенные катализаторы для получения ароматических углеводородов ряда бензола из метанола и способ переработки метанола -  патент 2477656 (20.03.2013)
способ получения синтетических авиационных топлив из углеводородов, полученных по методу фишера-тропша, и катализатор для его осуществления -  патент 2473664 (27.01.2013)
микросферический бицеолитный катализатор для повышения октанового числа бензина крекинга вакуумного газойля и способ его приготовления -  патент 2473384 (27.01.2013)
катализатор для каталитического крекинга, его получение и использование -  патент 2471553 (10.01.2013)

Класс B01J23/31 в сочетании с висмутом

Класс B01J23/75 кобальт

катализатор для окисления сернистых соединений -  патент 2529500 (27.09.2014)
способ получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2529492 (27.09.2014)
способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
способ и устройство для изготовления частиц защищенного катализатора с помощью расплавленного органического вещества -  патент 2528424 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
способ оптимизации функционирования установки для синтеза углеводородов из синтез-газа путем контроля парциального давления со -  патент 2525291 (10.08.2014)
способ приготовления гетерогенного фталоцианинового катализатора для окисления серосодержащих соединений -  патент 2523459 (20.07.2014)
регенерация катализатора фишера-тропша путем его окисления и обработки смесью карбоната аммония, гидроксида аммония и воды -  патент 2522324 (10.07.2014)
способы гидрокрекинга с получением гидроизомеризованного продукта для базовых смазочных масел -  патент 2519547 (10.06.2014)
катализаторы -  патент 2517700 (27.05.2014)

Класс B01J23/84 с мышьяком, сурьмой, висмутом, ванадием, ниобием, танталом, полонием, хромом, молибденом, вольфрамом, марганцем, технецием или рением

способ получения катализатора синтеза углеводородов и его применение в процессе синтеза углеводородов -  патент 2502559 (27.12.2013)
цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола -  патент 2498853 (20.11.2013)
катализатор для получения метилмеркаптана -  патент 2497588 (10.11.2013)
катализатор гидродеоксигенации кислородорганических продуктов переработки растительной биомассы и процесс гидродеоксигенации с применением этого катализатора -  патент 2472584 (20.01.2013)
шариковый катализатор для гидроочистки нефтяных фракций и способ его приготовления -  патент 2472583 (20.01.2013)
способ аммоксимирования -  патент 2453535 (20.06.2012)
способ изготовления пористого гранулированного катализатора -  патент 2453367 (20.06.2012)
катализатор парового риформинга углеводородов и способ его получения -  патент 2446879 (10.04.2012)
катализатор и процесс гидродеоксигенации кислородорганических продуктов переработки растительной биомассы -  патент 2440847 (27.01.2012)
кобальтовый катализатор синтеза углеводородов c5+, способ их получения и способ получения катализатора -  патент 2432990 (10.11.2011)

Класс B01J27/185 с металлами группы железа или платины

цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола -  патент 2498853 (20.11.2013)
способ приготовления катализатора для разложения закиси азота и процесс обезвреживания газовых выбросов, содержащих закись азота -  патент 2477177 (10.03.2013)
катализатор гидродеоксигенации кислородорганических продуктов переработки растительной биомассы и процесс гидродеоксигенации с применением этого катализатора -  патент 2472584 (20.01.2013)
катализатор, способ его приготовления и способ гидрооблагораживания дизельных дистиллятов -  патент 2468864 (10.12.2012)
способ получения циановодорода при каталитическом окислении в аммиачной среде -  патент 2454277 (27.06.2012)
способ получения катализатора гидрообработки путем пропитки фосфорсодержащим соединением -  патент 2451551 (27.05.2012)
катализаторы гидроконверсии и способы их изготовления и применения -  патент 2342995 (10.01.2009)
катализатор, способ его получения (варианты) и способ гидрообессеривания дизельной фракции -  патент 2313390 (27.12.2007)
катализатор, способ его получения, способ получения носителя для этого катализатора и процесс гидрообессеривания дизельных фракций -  патент 2313389 (27.12.2007)
способ получения углеводородов и катализатор для его осуществления -  патент 2266884 (27.12.2005)

Класс B01J27/186 с мышьяком, сурьмой, висмутом, ванадием, ниобием, танталом, полонием, хромом, молибденом, вольфрамом, марганцем, технецием или рением

Класс B01J37/02 пропитывание, покрытие или осаждение

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
вольфрамкарбидные катализаторы на мезопористом углеродном носителе, их получение и применения -  патент 2528389 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
катализатор для процесса гидродепарафинизации и способ его получения -  патент 2527283 (27.08.2014)
способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
катализатор для получения синтетических базовых масел и способ его приготовления -  патент 2525119 (10.08.2014)
конструктивный элемент с антимикробной поверхностью и его применение -  патент 2523161 (20.07.2014)
катализатор для получения синтетических базовых масел в процессе соолигомеризации этилена с альфа-олефинами с6-с10 и способ его приготовления -  патент 2523015 (20.07.2014)
способ получения каталитического покрытия для очистки газов -  патент 2522561 (20.07.2014)
способ изготовления металл-углерод содержащих тел -  патент 2520874 (27.06.2014)

Класс C10G35/095 содержащими кристаллические алюмосиликаты, например молекулярные сита

катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ получения высокооктанового базового бензина -  патент 2518481 (10.06.2014)
цеолитсодержащий катализатор, способ его получения и способ переработки прямогонного бензина в высокооктановый компонент бензина с пониженным содержанием бензола -  патент 2498853 (20.11.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения низкооктановых бензиновых фракций в высокооктановый бензин без и в присутствии водорода -  патент 2480282 (27.04.2013)
цеолитсодержащий катализатор, способ его получения и способ превращения алифатических углеводородов c2-c12 и метанола в высокооктановый бензин и ароматические углеводороды -  патент 2478007 (27.03.2013)
гетерогенные катализаторы для получения ароматических углеводородов ряда бензола из метанола и способ переработки метанола -  патент 2477656 (20.03.2013)
способ улучшения катализатора ароматизации -  патент 2476412 (27.02.2013)
способ каталитического риформинга бензиновых фракций -  патент 2471855 (10.01.2013)
катализатор для риформинга бензиновых фракций и способ его приготовления -  патент 2471854 (10.01.2013)
катализатор гидроизомеризации, способ его получения, способ депарафинизации углеводородного масла и способ получения базового смазочного масла -  патент 2465959 (10.11.2012)
Наверх