способ получения активной основы противотурбулентной присадки на основе гомо- и сополимеризации aльфа-олефинов

Классы МПК:C08F10/14 мономеры, содержащие пять или более атомов углерода
C08F2/14 органическая среда
C08F4/16 кремния, германия, олова, свинца, титана, циркония или гафния
C10L1/10 содержащее присадки 
Автор(ы):, , , , , ,
Патентообладатель(и):Закрытое акционерное общество Опытный завод НЕФТЕХИМ (RU)
Приоритеты:
подача заявки:
2012-06-13
публикация патента:

Изобретение относится к нефтехимии, а именно к полимерным химическим реагентам, снижающим гидродинамическое сопротивление, возникающее при транспорте углеводородных жидкостей по трубопроводам. Описан способ получения полимерных основ для противотурбулентных присадок. Способ включает полимеризацию способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 -олефинов C6-C30 в присутствии в качестве катализатора продукта восстановления тетрахлорида титана алюминийорганическим соединением, и в качестве сокатализатора комплекса на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и диметилалюминийхлорида. Молярное соотношение реагентов - способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 -олефин 1, катализатор 0,002-0,004, сокатализатор 0,02-0,04. Реакцию полимеризации проводят в интервале температур от -20° до +20°C в течение 8-12 часов. Технический результат - увеличение выхода целевого продукта и его молекулярной массы, снижение молекулярно-массового распределения. 1 табл., 2 пр.

Формула изобретения

Способ получения полимерных основ для противотурбулентных присадок, включающий полимеризацию высших альфа-олефинов в присутствии в качестве катализатора продукта восстановления тетрахлорида титана алюминийорганическим соединением и алюминийорганического сокатализатора в интервале температур от -20°C до +20°C, отличающийся тем, что в качестве высших альфа-олефинов используют олефины с числом атомов углерода от 6 до 30, а в качестве алюминийорганического сокатализатора используют комплекс на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и диметилалюминийхлорида при следующем молярном соотношении реагентов:

способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 -олефин С6-С30 1
катализатор 0,002-0,004
сокатализатор 0,02-0,04,


причем реакцию проводят в течение 8-12 ч.

Описание изобретения к патенту

Изобретение относится к нефтехимии, а именно к полимерным химическим реагентам, снижающим гидродинамическое сопротивление (ГДС), возникающее при транспорте углеводородных жидкостей по трубопроводам. Применение таких реагентов позволяет увеличить производительность действующих трубопроводов, уменьшить количество перекачивающих станций (НПС) и давление, развиваемое НПС, а также потребляемую электроэнергию. Введение их в поток в концентрациях порядка 2-30 г на одну тонну нефти позволяет увеличить пропускную способность нефтепроводов в зависимости от диаметра на 15-47%.

Особенностью полимеризации способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 -олефинов с использованием катализаторов Циглера-Натта является то, что самая высокомолекулярная фракция полимера формируется на ранних стадиях конверсии, и в способах [Pat. US № 4415714, Pat. US № 4433123] процесс обрывают на 20%-ной стадии конверсии, что приводит к большому расходу мономера и катализатора.

Известен способ полимеризации высших способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 -олефинов на алюмотермическом катализаторе TiCl3 1/3 AlCl3 в присутствии алюминийорганического сокатализатора Al(СН2СН3)2Cl в течение 31 часа [Pat. US № 3692676]. Выход целевого продукта 88%, снижение гидродинамического сопротивления нефти 12,0% при концентрации агента 5 ppm. Недостатками способа являются незначительное увеличение производительности трубопроводов и длительное время полимеризации.

Известен способ получения противотурбулентной присадки [Pat. US № 4647633] полимеризацией способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 -олефинов в среде углеводородного растворителя на катализаторе TiCl3 1/3 AlCl3, но в качестве алюмоорганического сокатализатора выступает смесь Al(СН2СН3 )2Cl и Al(СН2СН3)3 . Время полимеризации 8 часов, выход целевого продукта 64%, DR 18,2% при концентрации агента 2 ppm. Недостатками способа являются низкие значения снижения ГДС и выхода продукта.

Наиболее близким по технологии синтеза и достигаемому результату является способ полимеризации 0,12-0,80 моль способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 -олефинов в среде углеводородного растворителя в присутствии в качестве катализатора 0,002-0,02 моль TiCl3, полученного восстановлением TiCl4 алюмоорганическим соединением, и 0,0017-0,0170 моль алюмоорганического сокатализатора в интервале температур от -30°C до +20°C в течение 5 часов [Патент РФ № 2075485, 1997 г.]. DR=30-48% (н-гептан). Недостатками способа являются недостаточно высокая молекулярная масса и широкое молекулярно-массовое распределение, а также сильное разбавление активной основы, что приводит к увеличению себестоимости противотурбулентной присадки.

Задачей заявляемого изобретения является получение нефтерастворимых полимеров с исключительно высокой молекулярной массой и узким молекулярно-массовым распределением, снижающих ГДС керосина.

Технический результат при использовании изобретения - увеличение выхода целевого продукта и его молекулярной массы, снижение молекулярно-массового распределения.

Указанный технический результат достигается тем, что в способе получения полимерных основ для противотурбулентных присадок, включающем полимеризацию высших альфа-олефинов в присутствии в качестве катализатора продукта восстановления тетрахлорида титана алюминийорганическим соединением, и алюминийорганического сокатализатора в интервале температур от -20°C до +20°C, согласно изобретению. в качестве высших альфа-олефинов используют олефины с числом атомов углерода от 6 до 30, а в качестве алюминийорганического сокатализатора используют комплекс на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и диметилалюминийхлорида при следующем молярном соотношении реагентов:

способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 -олефин C6-C30 1
катализатор 0,002-0,004
сокатализатор 0,02-0,04

причем реакцию проводят в течение 8-12 часов.

Полимеризацию проводят в отсутствии растворителя, что приводит к получению концентрированной активной основы и уменьшению экономических потерь, связанных с отсутствием процессов выделения полимера (осушки, осаждением растворителем и т.д.).

Заявляемая каталитическая система отличается высокой активностью по отношению к способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 -олефинам (C6-C30), приводит к образованию полимеров с исключительно высокой молекулярной массой M=15-21·10 6 Да и узким молекулярно-массовым распределением.

Перечисленные отличительные признаки указывают на специфическую особенность указанной системы мономер-катализатор-сокатализатор, которая позволяет получать нефтерастворимые полимеры с исключительно высокой молекулярной массой и узким молекулярно-массовым распределением.

Благодаря заявляемому способу обеспечивается получение сверхвысокомолекулярных полимеров в течение 8-12 часов в интервале температур от -20°C до +20°С с выходом 90-98%, снижающих ГДС керосина на 35-47% при концентрации полимера 2 ppm.

Предлагаемый способ осуществляется следующим образом. В реактор из нержавеющей стали марки 12Х18Н10Т, снабженный перемешивающим устройством, линиями загрузки компонентов и барботажа инертного газа, линией разгрузки продукта, карманом для термопары загружают расчетное количество мономеров. Отдельно в инертной среде готовят каталитическую систему, состоящую из катализатора TiCl3 , полученного восстановлением TiCl4 алюмоорганическим соединением (например, Al(СН3)2Cl, Al(СН 2СН3)2Cl, Al(СН2СН 3)3) и сокатализатора - алюминийсодержащего комплекса на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и Al(СН 3)2Cl. Далее проводят загрузку катализатора в реактор. Перемешивание проводят в течение 15 минут, после чего производят загрузку реакционной массы в специальные емкости для проведения более полной полимеризации. Емкости оборудованы рубашкой для термостатирования реакционной массы и поддержания постоянной температуры в температурном интервале от +20 до -20°C. По истечении 8-12 часов проводят выгрузку готовой активной основы противотурбулентной присадки.

Получение сокатализатора осуществляют по методикам [Flores-Parra A., and other // Eur. J.Inorg. Chem. - 1999. - P.2069-2073; Galvez-Ruiz С.J., and other // Eur. J.Inorg. Chem. - 2004. - P.601-611; Juan Carlos Galvez-Ruizand // Eur. J.Inorg. Chem. 2003, 42, P.7569-7578]. В металлическую термостатированную емкость загружают 0,01 моль 3-тиа-1,5-диазабицикло[3.2.1]октана и при перемешивании в инертной среде при температуре -40°C добавляют 0,01 моль Al(СН3)2Cl (в гексане или толуоле). Перемешивание реакционной массы проводят в течение 2 часов. Гетероциклическое соединение 3-тиа-1,5-диазабицикло[3.2.1]октан получено [Akhmetova V.R., Vagapov R.A. and other, Tetrahedron, 2007 Vol.63, Is. 47, P.11702-11709] тиометилированием этилендиамина с помощью формальдегида и сероводорода при температуре 0°C.

Экспериментальную проверку наработанных образцов проводили на капиллярном турбулентном реометре с использованием в качестве рабочей жидкости керосина марки ТС-1. С помощью газа (азота) в реометре создается давление (Р=10 атм) и различные скорости течения жидкости через капилляр с радиусом (r=2 мм) и длиной (l=1 м). Концентрация исследуемых образцов составляет 2 ppm. С помощью секундомера фиксируется время истечения керосина и рассчитывается снижение ГДС (DR) по формуле:

способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138

где способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 0 - время истечения чистого керосина ТС-1, с;

способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 - время истечения керосина с исследуемой присадкой, с.

В доступной научно-технической и патентной литературе способ, включающий полимеризацию высших альфа-олефинов С6-С30 в присутствии в качестве катализатора продукта восстановления тетрахлорида титана алюминийорганическим соединением, и в качестве сокатализатора комплекса на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и диметилалюминийхлорида при молярном соотношении реагентов соответственно 1:0,002-0,004:0,02-0,04 в интервале температур (-20) - +(20)°C в течение 8-12 часов. Таким образом, заявляемое изобретение соответствует критерию «новизна».

Исследованиями авторов установлено, что проведение полимеризации высших альфа-олефинов С6-С30 в присутствии в качестве катализатора продукта восстановления тетрахлорида титана алюминийорганическим соединением, и в качестве сокатализатора комплекса на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и диметилалюминийхлорида при молярном соотношении реагентов соответственно 1:0,002-0,004:0,02-0,04 в интервале температур от -20°C до +20°C в течение 8-12 часов, обеспечивает получение нефтерастворимых полимеров с исключительно высокой молекулярной массой и узким молекулярно-массовым распределением, снижающих ГДС керосина. Таким образом, заявляемое изобретение соответствует критерию «изобретательский уровень».

Сущность изобретения поясняется следующими примерами:

Пример 1. В реактор при температуре 25°C загружали способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 -олефины C-8 (4 моль) и C-27 (1 моль). Включали подачу азота и при перемешивании загружали расчетное количество каталитической системы в реактор.

Каталитическая система готовилась в отдельной емкости. В сухую емкость в токе азота загружали TiCl 3 (0,01 моль), полученного восстановлением TiCl4 алюминийорганическим соединением, и сокатализатор (0,1 моль) комплекс на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и Al(СН 3)2Cl.

Перемешивание проводили в течение 15 минут, после чего производили загрузку реакционной массы в специальные емкости для проведения более полной полимеризации. По истечении 8 часов выдержки при температуре 0°C проводили выгрузку готовой активной основы противотурбулентной присадки для проведения ее дальнейшей сушки. Выход целевого продукта 98%, DR 42%, Мр=18,7 млн Да, ([D]=1,06).

Пример 2. В реактор при температуре 25°C загружали способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 -олефины C-12 (3 моль) и C-30 (2 моль). Включали подачу азота и при перемешивании загружали расчетное количество каталитической системы в реактор.

Каталитическая система готовилась в отдельной емкости. В сухую емкость в токе азота загружали TiCl 3 (0,018 моль), полученного восстановлением TiCl4 алюминийорганическим соединением, и сокатализатор (0,18 моль) комплекс на основе 3-тиа-1,5-диазабицикло[3.2.1]октана и Al(СН3)2Cl.

Перемешивание проводили в течение 15 минут, после чего производили загрузку реакционной массы в специальные емкости для проведения более полной полимеризации. По истечении 12 часов выдержки при температуре -20°C проводили выгрузку готовой активной основы противотурбулентной присадки. Выход целевого продукта 98%, DR 47%, Мр=20,3 млн Да, [D]=1,05.

Определение молекулярно-массового распределения образцов проводили на гель-хроматографе Shimadzu LC 20AD Prominence с применением универсальной калибровки, построенной на образцах полистирола. В качестве подвижной фазы использовался тетрагидрофуран (чистый для спектроскопии), в качестве внутреннего стандарта - толуол (х.ч.).

Как видно из примеров 1-2 и примеров, представленных в таблице, заявляемый способ, включающий использование в качестве исходного соединения способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 -олефинов С6-С30, а в качестве каталитической системы: TiCl3, полученный восстановлением TiCl4 алюмоорганическим соединением (например, Al(СН3) 2Cl, Al(СН2СН3)2Cl, Al(СН 2СН3)3), и сокатализатор на основе комплекса 3-тиа-1,5-диазабицикло[3.2.1]октана и Al(СН3 )2Cl, благодаря использованию уникальной каталитической системы позволяет получить активную основу противотурбулентной присадки с высоким выходом (90-98%), высокой молекулярной массой (15-21 млн Да) и узким молекулярно-массовым распределением ([D] не более 1,06, ГДС (DR)=35-47%. Реакция проходит в отсутствии растворителя, что приводит к увеличению концентрации полимерной основы и уменьшению себестоимости противотурбулентной присадки.

Предлагаемый способ может быть использован в нефтехимической промышленности, воспроизводим и при использовании реализуется его назначение. Таким образом, заявляемое изобретение соответствует критерию патентоспособности «промышленная применимость».

Таблица
Примеры осуществления способа
Исходные способ получения активной основы противотурбулентной присадки   на основе гомо- и сополимеризации aльфа-олефинов, патент № 2487138 -олефины (соотношение, %) Температура, °C Время, чМолекулярная масса, Мр, млн Да Дисперсия, [D]Выход, %Снижение ГДС, DR, %
С6 (70)

С30 (30)
-2012 20,81,04 9247
С6 (70)

C30 (30)
20 815,0 1,0590 37
С24 (50)

С18 (50)
-2012 21,01,05 9344
С24 (50)

С18 (50)
20 815,8 1,0694 35
C11 (80)

С27 (20)
-2012 19,951,05 9146
С15 (70)

C30 (30)
-20 1220,7 1,0695 45

Класс C08F10/14 мономеры, содержащие пять или более атомов углерода

олигомеризация альфа-олефинов с применением каталитических систем металлоцен-тск и применение полученных полиальфаолефинов для получения смазывающих смесей -  патент 2510404 (27.03.2014)
способ получения противотурбулентной присадки с рециклом мономеров, способ получения противотурбулентной присадки, способ получения высших поли- -олефинов для этих способов и противотурбулентная присадка на их основе -  патент 2505551 (27.01.2014)
способ получения поли-альфа-олефинов -  патент 2494113 (27.09.2013)
способ получения противотурбулентной присадки суспензионного типа, снижающей гидродинамическое сопротивление углеводородных жидкостей -  патент 2481357 (10.05.2013)
регулирование уровня разветвления и вязкости поли-альфа-олефинов посредством введения пропена -  патент 2480482 (27.04.2013)
способ получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов -  патент 2463320 (10.10.2012)
разделение полимерных суспензий -  патент 2454432 (27.06.2012)
способ получения антитурбулентной присадки суспензионного типа -  патент 2443720 (27.02.2012)
пластифицирующая система для резиновой композиции -  патент 2382799 (27.02.2010)
способ получения катализатора для полимеризации высших -олефинов и способ получения сверхвысокомолекулярных поли- -олефинов -  патент 2368624 (27.09.2009)

Класс C08F2/14 органическая среда

способ получения полимерно-битумных композиций -  патент 2522618 (20.07.2014)
способ уменьшения отложений в полимеризационных сосудах -  патент 2470037 (20.12.2012)
способ полимеризации в суспензионной фазе -  патент 2469048 (10.12.2012)
циркуляционный реактор для полимеризации -  патент 2440842 (27.01.2012)
полимерная дисперсия в реакционной органической среде, способ получения и применение -  патент 2414478 (20.03.2011)
полиэтиленовый формовочный порошок и изготовленные из него пористые изделия -  патент 2379317 (20.01.2010)
водный клей для склеивания эластомеров -  патент 2145623 (20.02.2000)
эластомерные сополимеры этилена и способ их получения -  патент 2143441 (27.12.1999)
энергосберегающий способ получения химической добавки к цементным системам -  патент 2126016 (10.02.1999)
способ газофазной полимеризации олефинов и аппарат для его осуществления (варианты) -  патент 2126015 (10.02.1999)

Класс C08F4/16 кремния, германия, олова, свинца, титана, циркония или гафния

порошок полиолефина -  патент 2439085 (10.01.2012)
катализатор твердофазной полимеризации полиэфира для смол с низким образованием ацетальдегида -  патент 2428437 (10.09.2011)
полиэтилен и каталитическая композиция для его получения -  патент 2386642 (20.04.2010)
двойной металлоценовый катализатор для получения пленочных смол с хорошим сопротивлением раздиру по продольному направлению (md) по элмендорфу -  патент 2382793 (27.02.2010)
катализатор и способ получения полиэтилена и сополимеров этилена с альфа-олефинами с узким молекулярно-массовым распределением -  патент 2381236 (10.02.2010)
композиции катализаторов и полиолефины для сфер применения покрытий, нанесенных по способу экструдирования -  патент 2374272 (27.11.2009)
сополимеры с новыми распределениями последовательностей -  патент 2349607 (20.03.2009)
способы полимеризации -  патент 2346010 (10.02.2009)
способы полимеризации -  патент 2346007 (10.02.2009)
сополимеры с новыми распределениями последовательностей -  патент 2345095 (27.01.2009)

Класс C10L1/10 содержащее присадки 

способ получения оксигенатов, повышающих эксплуатационные свойства топлив для двигателей внутреннего сгорания (варианты) -  патент 2522764 (20.07.2014)
ракетное топливо староверова - 14 (варианты) -  патент 2516825 (20.05.2014)
ракетное топливо староверова - 15 (варианты) -  патент 2516711 (20.05.2014)
модификатор горения твердого, жидкого и газообразного топлива -  патент 2515988 (20.05.2014)
ракетное топливо -  патент 2513850 (20.04.2014)
жидкие топливные композиции -  патент 2512083 (10.04.2014)
многофункциональная добавка к автомобильному бензину и топливная композиция, ее содержащая -  патент 2510415 (27.03.2014)
способ введения депрессорной присадки в парафинистую нефть -  патент 2508393 (27.02.2014)
способ получения противотурбулентной присадки с рециклом мономеров, способ получения противотурбулентной присадки, способ получения высших поли- -олефинов для этих способов и противотурбулентная присадка на их основе -  патент 2505551 (27.01.2014)
способ получения и состав присадки к жидкому топливу -  патент 2502790 (27.12.2013)
Наверх