способ охлаждения двух потоков теплоносителя

Классы МПК:F28D9/00 Теплообменные аппараты с неподвижными плоскими или пластинчатыми каналами для двух теплоносителей, причем оба теплоносителя контактируют с разделяющими стенками канала
Автор(ы):,
Патентообладатель(и):Кудрявцев Виктор Васильевич (RU),
Шлемова Татьяна Алексеевна (RU)
Приоритеты:
подача заявки:
2011-12-29
публикация патента:

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. В способе охлаждения двух потоков теплоносителя путем теплообмена с охлаждающим воздухом через теплообменную поверхность в многоходовом перекрестноточном теплообменнике оба потока охлаждаются в единой двухсекционной матрице теплообменника, при этом поток теплоносителя, имеющий более высокую входную температуру, предварительно охлаждается в первой секции матрицы, используя температурный потенциал выходящего потока охлаждающего воздуха, затем, смешиваясь с основным потоком теплоносителя, изменяя его входную температуру и повышая температурный напор, поступает во вторую секцию матрицы, где оба потока продолжают охлаждаться до необходимой температуры набегающим воздушным потоком при более высоком температурном напоре. Технический результат - повышение эффективности теплообменника и уменьшение гидравлического сопротивления воздушного тракта. 8 ил.

способ охлаждения двух потоков теплоносителя, патент № 2485428 способ охлаждения двух потоков теплоносителя, патент № 2485428 способ охлаждения двух потоков теплоносителя, патент № 2485428 способ охлаждения двух потоков теплоносителя, патент № 2485428 способ охлаждения двух потоков теплоносителя, патент № 2485428 способ охлаждения двух потоков теплоносителя, патент № 2485428 способ охлаждения двух потоков теплоносителя, патент № 2485428 способ охлаждения двух потоков теплоносителя, патент № 2485428

Формула изобретения

Способ охлаждения двух потоков теплоносителя путем теплообмена с охлаждающим воздухом через теплообменную поверхность в многоходовом перекрестноточном теплообменнике, отличающийся тем, что, с целью повышения эффективности теплообменника и уменьшения гидравлического сопротивления воздушного тракта, оба потока охлаждаются в единой двухсекционной матрице теплообменника, при этом поток теплоносителя, имеющий более высокую входную температуру, предварительно охлаждается в первой секции матрицы, используя температурный потенциал выходящего потока охлаждающего воздуха, затем, смешиваясь с основным потоком теплоносителя, изменяя его входную температуру и повышая температурный напор, поступает во вторую секцию матрицы, где оба потока продолжают охлаждаться до необходимой температуры набегающим воздушным потоком при более высоком температурном напоре.

Описание изобретения к патенту

Изобретение относится к области теплотехники, к теплообменным аппаратам, в частности к способам охлаждения различных теплоносителей в теплообменных аппаратах, применяемых в теплосиловых установках.

Известны способы охлаждения масла («Самолет АН-12. Техническое описание». - М.: Оборонгиз, 1962, с.199; Воронин Г.И., Верба М.И. Кондиционирование воздуха на летательных аппаратах. - М.: Машиностроение, 1965, с.141; Воронин Г.И. Конструирование машин и агрегатов систем кондиционирования. - М.: Машиностроение, 1978, с.69; Авторское свидетельство СССР № 1129852, кл. B64D 33/00) встречным потоком забортного воздуха в поршневых и газотурбинных двигателях авиационных объектов (самолетах, вертолетах). В одну полость теплообменника подается теплоноситель (масло), в другой движется охлаждающий воздух. Часто возникает необходимость охлаждения двух потоков масла, поступающих, например, от опор двигателя и редуктора. В этом случае в каждой линии масляного потока устанавливается воздухомасляный теплообменник, осуществляется отдельный подвод и отвод масла, организуется продувка теплообменников охлаждающим воздухом.

Недостатком указанного способа является необходимость распределения воздушного потока или дополнительная организация его во всех используемых теплообменниках и, следовательно, повышение общего гидравлического сопротивления и уменьшение возможности интенсификации теплообмена. При этом возникает необходимость в создании подводящих патрубков и фланцев крепления для каждого работающего теплообменника, увеличение воздухозаборника или мощности вентилятора.

Это влияет на один из важнейших параметров в авиации - суммарную массу системы охлаждения объекта.

Существуют различные типы рекуперативных пластинчатых теплообменников, принцип действия которых рассматривается в научной, учебной, справочной литературе.

Например (Проектирование авиационных систем. Под ред. Ю.М.Шустрова. - М.: Машиностроение, 2006, с.31, рис.2.7), приводится конструкция пластинчато-ребристого перекрестно-противоточного четырехходового топливовоздушного теплообменника для охлаждения горячего воздуха топливом. Поток топлива делает в теплообменнике четыре хода, взаимодействуя через гофрированные пластины с воздухом. Конструкция является объемной, так как состоит из четырех секций, что обычно требует значительного перепада давления воздуха в теплообменнике.

В «Справочник по теплообменникам» (том 2. Перевод с английского под ред. Б.С.Петухова и В.К.Шикова - М.: Энергоатомиздат, 1987, с.103, рис.1) рассматривается теплообменник с тремя теплоносителями, конструкция которого состоит из большого числа проходов, собранных в повторяющиеся элементы. Такая конструкция имеет достаточно сложностей при проектировании и технологии исполнения. Задача проектирования включает анализ процессов теплопередачи в каждом отдельном пакете и затем корректировку результатов в соответствии с требованиями к общему потоку. При этом возможно увеличение поверхности теплообмена, так как существует влияние теплоносителей друг на друга по мере движения внутри теплообменника. Подобное усложнение конструкции для летательных аппаратов часто не является оправданным ни с точки зрения повышения эффективности, ни по другим техническим характеристикам.

Наиболее близким техническим решением является блок из двух воздухомасляных теплообменников (Техническое описание и инструкция по эксплуатации блока радиаторов воздушно-масляных 5349Т. НПО «Наука», 1972, с.5, рис.2), соединенных болтами. Каждый из теплообменников состоит из корпуса, крышек, термоклапанов, штуцеров стравливапия воздуха и заглушек. Горячее масло из масляных систем объекта поступает в теплообменники параллельно, сделав несколько ходов, передает тепло продувочному воздуху и возвращается в системы.

Недостатком такого блока является сложность и часто невозможность организации движения теплоносителей для интенсификации теплообмена со стороны воздуха, так как коэффициент теплопередачи в данном случае в большей степени определяется коэффициентом теплообмена со стороны воздуха, чем со стороны масла. Недоиспользование потенциала воздуха ведет к уменьшению эффективности блока и понижению суммарного теплосъема.

Цель изобретения - повышение эффективности теплообменника и уменьшение гидравлического сопротивления воздушного тракта.

Данная цель достигается тем, что в способе охлаждения двух потоков теплоносителя путем теплообмена с охлаждающим воздухом через теплообменную поверхность в многоходовом перекрестноточном теплообменнике оба потока теплоносителя охлаждаются в единой двухсекционной матрице теплообменника, при этом поток теплоносителя, имеющий более высокую входную температуру, предварительно охлаждается в первой секции матрицы, используя температурный потенциал выходящего потока охлаждающего воздуха, затем, смешиваясь с основным потоком теплоносителя, изменяя его входную температуру и повышая температурный напор, поступает во вторую (основную) секцию матрицы, где оба потока продолжают охлаждаться до необходимой температуры входящим в теплообменник набегающим воздухом при более высоком температурном напоре.

Предлагаемый способ реализован в конструкции воздухомасляного теплообменника для охлаждения масла, поступающего двумя самостоятельными потоками от опор и редуктора двигателя.

На фиг.1 изображена схема движения теплоносителей в теплообменнике, на фиг.2 - общий вид изготовленного с использованием предлагаемого способа воздухомасляного теплообменника; на фиг.3 - конструкция предлагаемого теплообменника, на фиг.4 - вид Б; на фиг.5 - разрез В-В; на фиг.6 - разрез А-А; на фиг.7 - комбинированная принципиальная схема теплообменника; на фиг.8 приведена зависимость теплосъема (Qм) от расхода воздуха (Gвоз ) для предлагаемого теплообменника (кривые 1 и 2) и для прототипа (кривая 3).

Теплообменник состоит из двух секций-матриц 1 и 2, термостатического клапана 3, переливного клапана 4, клапана стравливания воздуха 5.

К матрицам 1 и 2 приварены крышки 6 и 7 и фланцы 8, 9. В крышке 6 имеется гнездо входа масла из опор 10, соединенное с трубопроводом 11, направляющим масло в матрицу теплообменника.

Во внутренней полости крышки 7 находятся клапаны 3, 4, 5, а также гнездо входа масла из редуктора 12 и гнездо выхода масла 13. В крышку 7 ввернуты заглушки 14 и 15. Герметичность заглушек 14 и 15 обеспечивается уплотнительными кольцами 16 и 17.

К крышке 7 винтами 18 крепится кран 19, предназначенный для слива масла.

Теплообменник на объекте крепится к раме воздухозаборника за фланец 8 болтами и к тягам за кронштейны 21 и 22 фланца 9. В кронштейнах имеются подшипники 23.

Горячее масло поступает в теплообменник двумя самостоятельными потоками: от опор и редуктора двигателя.

Охлаждение масла происходит за счет отдачи тепла через разделительные и гофрированные пластины продувочному воздуху, проходящему через вторую 2, затем через первую 1 секции матрицы теплообменника. В первой секции 1 доиспользуется температурный потенциал выходящего из теплообменника охлаждающего воздуха и при этом появляется возможность предварительного охлаждения масла, имеющего более высокую температуру на входе в теплообменник.

Масло от опор направляется в первую пластинчатую секцию 1 матрицы теплообменника, предварительно охлаждается потоком воздуха, прошедшим вторую секцию 2, выходит через собирающий коллектор во входную для второго потока теплоносителя (от редуктора) крышку 7, где перемешивается с потоком масла, поступающим от редуктора, изменяя входную температуру полученного общего потока.

Затем общий поток теплоносителя поступает во вторую секцию матрицы 2, которая может иметь несколько ходов (в нашем случае - два хода), и охлаждается до необходимой температуры входящим потоком воздуха. Температурный напор, при котором работает секция 2, повышен, что позволяет увеличить ее эффективность.

Общий поток теплоносителя выходит из матрицы в крышку 7.

В выходной крышке установлен терморедукционный клапан 3 для перепуска теплоносителя мимо матрицы теплообменника с входа на выход в случае необходимости.

Воздух, охладив общий поток теплоносителя, продолжает двигаться во второй секции 2 матрицы, взаимодействуя с первым потоком теплоносителя. Затем выходит из теплообменника через открытый фланец 9.

Эффективность предлагаемого технического решения выражается в повышении тепловой эффективности работы теплообменника из-за более полного использования температурного потенциала охлаждающего воздуха и повышения температурного напора. Теплосъем может быть повышен на 12% (фиг.8). Увеличение эффективности теплообменника позволяет уменьшить его габаритные размеры и, как следствие, уменьшить массу.

Получена возможность выполнения единой матрицы теплообменника большей компактности из-за отсутствия планок, проставок и мест крепления, что позволяет уменьшить гидравлическое сопротивление воздушного тракта. Так как нет необходимости в камере смешения и дополнительных патрубках подвода и отвода потоков, может быть повышена и компактность всей системы охлаждения.

Класс F28D9/00 Теплообменные аппараты с неподвижными плоскими или пластинчатыми каналами для двух теплоносителей, причем оба теплоносителя контактируют с разделяющими стенками канала

перфорированные ребра теплообменника -  патент 2528235 (10.09.2014)
способ изготовления набора пластин для теплообменника -  патент 2528225 (10.09.2014)
пластинчатый теплообменник для изотермических химических реакторов -  патент 2527901 (10.09.2014)
теплообменная пластина и пластинчатый теплообменник -  патент 2520767 (27.06.2014)
теплообменник -  патент 2500965 (10.12.2013)
пластинчатый теплообменник -  патент 2498184 (10.11.2013)
металлическая пластина для теплообмена и способ изготовления металлической пластины для теплообмена -  патент 2493527 (20.09.2013)
пластинчатый теплообменник с естественной подачей охлаждающего воздуха -  патент 2493525 (20.09.2013)
теплообменник -  патент 2488060 (20.07.2013)
спиральный теплообменник -  патент 2482411 (20.05.2013)
Наверх