способ измерения частоты сигнала

Классы МПК:G01R23/00 Устройства для измерения частоты, анализаторы спектра частот
Автор(ы):
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") (RU)
Приоритеты:
подача заявки:
2011-10-17
публикация патента:

Изобретение относится к измерительной технике и может быть использовано в спектрометрии. Способ измерения частоты сигнала предполагает прием сигнала с последующим аналого-цифровым преобразованием, выполнение быстрого преобразования Фурье, преобразование числового массива во временной области в числовой массив в частотной области, определение номера jmax элемента числового массива, соответствующего максимальной амплитуде сигнала в частотной области, определяющего приближенное значение количества периодов сигнала в интервале наблюдения, создание 2к+1 эталонных сигналов во временной области, по форме соответствующих исходному массиву во временной области, количество периодов которых смещают по отношению к количеству периодов исходного сигнала на jmax*(s/k-l)*b, где s=0, 1, 2,способ измерения частоты сигнала, патент № 2478213 2k, где коэффициент b определяет размер окрестности, b=0способ измерения частоты сигнала, патент № 2478213 1 вблизи приближенного количества периодов сигнала j max в интервале наблюдения, вычисление коэффициентов корреляции 2к+1 эталонных сигналов с исходным, аппроксимацию зависимости коэффициентов корреляции 2к+1 эталонных сигналов с исходным сигналом от номера m в частотной области KK[m], где m=jmах+j mах*(s/k-1)*b, передискретизацию на основе найденной аппроксимирующей зависимости с увеличением количества элементов массива в R раз, т.е. формирование массива KK1[m1], где m1 =jmax+jmax*(s1/(k*R)-1)*b, s 1=0, 1,способ измерения частоты сигнала, патент № 2478213 2k*R, R - коэффициент передискретизации больше 1, нахождение элемента m1max числового массива, соответствующего максимальному значению коэффициента корреляции KK1. Значение m1max принимают за уточненное значение количества периодов исходного сигнала вместо jmax. Повторяют далее все предыдущие операции обработки сигнала, уменьшая каждый раз величину b, определяющую размер окрестности вблизи найденного количества периодов сигнала в интервале наблюдения. После достижения требуемой точности приближения оценки положения центра отраженного сигнала вычисляют значение частоты f=m1max/(N*dt). Техническим результатом заявленного изобретения является повышение точности измерений. 5 ил. способ измерения частоты сигнала, патент № 2478213

способ измерения частоты сигнала, патент № 2478213 способ измерения частоты сигнала, патент № 2478213 способ измерения частоты сигнала, патент № 2478213 способ измерения частоты сигнала, патент № 2478213 способ измерения частоты сигнала, патент № 2478213

Формула изобретения

Способ измерения частоты сигнала, включающий аналого-цифровое преобразование сигнала и измерение количества периодов сигнала с помощью быстрого преобразования Фурье, отличающийся тем, что определяют номер jmax элемента числового массива, соответствующего максимуму сигнала в частотной области, создают 2k+1 эталонных сигналов, по форме соответствующих исходному, количество периодов каждого смещают по отношению к количеству периодов исходного сигнала на величину jmax·(s/k-l)·b, где s=0, 1, 2,способ измерения частоты сигнала, патент № 2478213 2k, s - номер эталона, k - коэффициент больший или равный 3, b - постоянный коэффициент от 0 до 1, определяющий размер окрестности вблизи приближенного значения количества периодов измеряемого сигнала, вычисляют коэффициенты корреляции эталонных сигналов с исходным, производят аппроксимацию зависимости коэффициентов корреляции 2k+1 эталонных сигналов с исходным KK[m], где m=j max+jmax·(s/k-l)·b, производят передискретизацию на основе найденной аппроксимирующей зависимости для массива KK[m] с увеличением количества элементов массива в R раз, формируют массив KK1[m1], где m1=jmax+j max·(s1/(k·R)-l)·b, s1 =0, 1, 2,способ измерения частоты сигнала, патент № 2478213 2k·R, R - коэффициент передискретизации, больший 1, определяют значение m1max массива KK1[m1 ], которому соответствует максимальное значение коэффициента корреляции KK1, значение m1max принимают за уточненное количество периодов исходного сигнала, далее повторяют операции обработки сигнала с одновременным уменьшением коэффициента b, определяющего размер окрестности вблизи приближенного значения количества периодов сигнала, после чего вычисляют значение частоты f=m1max/(N·dt), где m1max - уточненное количество периодов исходного сигнала, dt - шаг дискретности по времени при измерении сигнала.

Описание изобретения к патенту

Изобретение относится к области измерительной техники и может быть использовано в спектрометрии для определения частоты несущей эхо-сигнала спектрометра.

Известен способ измерения частоты сигнала [патент РФ № 2008149062]. Способ заключается в измерении длительности периода Тх следования сигналов и в последующем определении частоты fx как величины, обратной периоду, причем для измерения периода Тх используют двоичный счетчик, в котором в процессе измерения каждого периода Тх в диапазоне от Txmin до Тхmах получают соответствующие числа NT, предварительно очищают число nmin младших разрядов этого счетчика, обеспечивающих измерение минимального периода Txmin с погрешностью дискретности, не превышающей способ измерения частоты сигнала, патент № 2478213 Т, определяют частоту fсч заполнения счетчика с учетом величины Txmin и числа NTKmin, получаемого в счетчике при измерении Txmin, определяют общее число nmах разрядов счетчика, исходя из величины максимального периода измеряемой частоты, отличается тем, что задают значение частоты fсч, округленное в сторону увеличения до ближайшей величины fсч=2Q *106 Гц, где Q - целое положительное или отрицательное число, подают числа NTK, получаемые после окончания периода Тх в nmin младших разрядах счетчика, на адресные входы постоянного запоминающего устройства (ПЗУ), в ячейках памяти которого хранятся предварительно записанные числа NПЗУ, пропорциональные соответствующим значениям fc частоты сигналов. При выполнении условия n min<nизм nmах, nизм =nmin+m1 или nmin nизм <nmах, nизм=nmах-m2 производят m1 или m2 сдвиг числа N TK в сторону младших или старших разрядов. Запоминают число m1 или m2 проведенных сдвигов и определяют частоту fx1 или fx2 исследуемых сигналов.

Известен способ измерения частоты сигнала, выбранный за прототип [Цифровой спектральный анализ и его приложения. С.Л.Марпл-мл. М.: Мир, 1990, - 584 с.]. Способ основан на выполнении быстрого преобразования Фурье (БПФ). Измерение частоты сводится к определению количества периодов К сигнала с помощью БПФ на интервале наблюдения N*dt, где N - количество отсчетов, a dt - интервал дискретности измерения, и последующему вычислению частоты сигнала по формуле f=K/(N*dt). Разрешение по частоте df, т.е. абсолютная погрешность результата измерения частоты, равно l/(N*dt) или, что то же, f/K, отсюда относительная погрешность определения частоты способ измерения частоты сигнала, патент № 2478213 f=1/K. Таким образом, погрешность определения частоты этим известным способом может быть значительной, если количество периодов сигнала в интервале наблюдения мало. В частности, эхо-сигналы спектрометров содержат очень малое количество периодов, менее 10 [В.И.Тарханов, В.С.Тутыгин. Приборный комплекс для поиска и исследования сигналов ЯМР в магнитоупорядоченных веществах. Журнал «Научное приборостроение», 2003, том 13, № 1], поэтому погрешность определения частоты достигает 10% и более. Погрешность будет еще больше, если сигнал будет зашумлен. Таким образом, недостаток известного способа определения частоты - недостаточно высокая точность.

Задачей изобретения является повышение точности измерения частоты сигнала.

Предложен способ измерения частоты сигнала, который включает прием сигнала с последующим аналого-цифровым преобразованием, быстрое преобразование Фурье, преобразующее числовой массив во временной области в числовой массив в частотной области, определение номера jmax элемента числового массива, соответствующего максимальной амплитуде сигнала в частотной области, определяющего приближенное значение количества периодов сигнала в интервале наблюдения, создание 2к+1 эталонных сигнала во временной области, по форме соответствующих исходному массиву во временной области, количество периодов которых смещают по отношению к количеству периодов исходного сигнала на jmax*(s/k-l)*b, где s=0, 1, 2,способ измерения частоты сигнала, патент № 2478213 2k, где коэффициент b определяет размер окрестности, b=0способ измерения частоты сигнала, патент № 2478213 1 вблизи приближенного количества периодов сигнала j max в интервале наблюдения, вычисление коэффициентов корреляции 2к+1 эталонных сигналов с исходным, аппроксимацию зависимости коэффициентов корреляции 2к+1 эталонных сигналов с исходным сигналом от номера m в частотной области KK[m], где m=jmax+j max*(s/k-l)*b, выполнение передискретизации на основе найденной аппроксимирующей зависимости с увеличением количества элементов массива в R раз, т.е. формирование массива KK1[m1], где m1=jmax+jmax*(s1 /(k*R)-1)*b, S1=0, 1,способ измерения частоты сигнала, патент № 2478213 2k*R, R - коэффициент передискретизации больше 1, нахождение элемента m1max числового массива, соответствующего максимальному значению коэффициента корреляции KK1. Значение m1max принимают за уточненное значение количества периодов исходного сигнала вместо jmax. Повторяют далее все предыдущие операции обработки сигнала, уменьшая каждый раз величину b, определяющую размер окрестности вблизи найденного количества периодов сигнала в интервале наблюдения. После достижения требуемой точности приближения оценки положения центра отраженного сигнала вычисляется значение частоты f=m1max/(N*dt).

Отличительными существенными признаками предлагаемого способа является обработка исходного сигнала, в результате чего частота сигнала определяется точно как при целом, так и при не целом количестве периодов, а при наличии шума в несколько раз с большей точностью, чем при использовании известного способа, основанного на использовании БПФ. Идея предлагаемого способа измерения частоты сигнала заключается в том, что значение центра jmax сигнала в частотной области, определенное с помощью БПФ [фиг.1] по принципу положения максимума амплитуды сигнала в частотной области и вычисленного на его основе значения количества периодов сигнала во временной области, используется только в качестве грубой оценки (начального приближения) количества периодов. Для получения более точного значения количества периодов производится формирование во временной области 2к+1 эталонных сигналов, соответствующих по форме исходному сигналу [фиг.2], но имеющих другое количество периодов, а именно со сдвигом jmax*(s/k-l)*b, где s=0, 1, 2,способ измерения частоты сигнала, патент № 2478213 2k, значение b задается с учетом возможной погрешности приближенного значения количества периодов в интервале от 0 до 1. Например, b=0.1, если погрешность оценки приближенного значения количества периодов не превышает 10%, k=3, если погрешность оценки приближенного значения количества периодов не превышает 10%, если возможна ошибка грубой оценки до 90%, то задают значения b=0.9 и k=25. Далее вычисляют коэффициенты корреляции исходного анализируемого сигнала со всеми эталонными KK[m], m=jmax +jmax*(s/k-l)*b, m отражает количество периодов измеряемого сигнала, в общем случае нецелое, находят с помощью аппроксимации непрерывную функциональную зависимость F (m), соответствующую массиву KK[m], выполняют передискретизацию на основе найденной функциональной зависимости F (m) для массива KK[m] с увеличением количества элементов массива в R раз, т.е. формирование массива KK1[m1], где m1=jmax+jmax *(s1/(k*R)-l)*b, s1=0, 1, 2,способ измерения частоты сигнала, патент № 2478213 2k*R, R - коэффициент передискретизации, например, равный 10, находят элемент массива m1max, соответствующий максимальному значению коэффициента корреляции KK1. Значение m1max принимают за уточненное (в общем случае нецелое) количество периодов сигнала. Упомянутая функция F (m) имеет вид параболы, обращенной вершиной вверх как в случае незашумленного, так и зашумленного сигнала, что и позволяет определить количество периодов сигнала более точно. При наличии шума форма функции сохраняется, уменьшается лишь абсолютное значение максимума. Процесс уточнения значения количества периодов итерационно повторяется, вначале итерации в качестве начального приближения используется уточненное значение m1max, полученное в результате предыдущей итерации. Повторение операций обработки прекращают после достижения требуемой точности приближения оценки значения количества периодов сигнала, которую оценивают по величине разности между вычисленными значениями количества периодов в результате текущего и предыдущего приближений. После этого вычисляют значение частоты как f=m1max/(N*dt), где dt - шаг дискретности по времени при измерении сигнала. В результате будет получено значение количества периодов и частоты с меньшей погрешностью в R раз, чем разрешение по частоте при использовании БПФ. Кроме того, при зашумленности отраженного сигнала, значение частоты сигнала предлагаемым способом будет получено в несколько раз более точно по сравнению с известным способом. Таким образом, совокупность отличительных признаков необходима и достаточна для решения поставленной задачи.

Схема устройства для возможной реализации предлагаемого способа измерения частоты сигнала представлена на фиг.3. Устройство включает 1 - генератор синхронизирующих импульсов СИ1 и СИ2, 2 - источник сигнала, 3 - аналого-цифровой преобразователь, 4 - счетчик адреса оперативного запоминающего устройства (ОЗУ), 5 - ОЗУ, 6 - вычислитель. На фиг.4 приведена временная диаграмма синхронизирующих импульсов СИ1 и СИ2. На фиг.5 приведена блок-схема алгоритма работы вычислителя 6.

Пример реализации предлагаемого способа в устройстве фиг.3

Генератор синхронизирующих импульсов 1 вырабатывает синхронизирующий импульс СИ1, который производит сброс счетчика адреса записи в ОЗУ и запускает источник сигнала 2. С момента формирования синхронизирующего импульса СИ1 начинается формирование синхроимпульсов СИ2 генератором 1, аналого-цифровое преобразование ожидаемого входного сигнала с помощью аналого-цифрового преобразователя 3 и запись результатов преобразования в оперативное запоминающее устройство 5 по адресу, задаваемому адресным счетчиком 4. При этом будет зафиксировано N дискретных отсчетов сигнала. Далее вычислитель 6 производит чтение и обработку зарегистрированного и хранящегося в оперативном запоминающем устройстве 5 дискретизированного сигнала в соответствии с алгоритмом, представленным на фиг.5. Действия обработки выполняются в следующем порядке:

1. Производят чтение зарегистрированного в оперативном запоминающем устройстве 5 входного сигнала, представленного в виде набора из N отсчетов.

2. Производят быстрое преобразование Фурье, в результате чего формируют массив частотного спектра в виде набора из N чисел.

3. Определяют номер элемента jmax массива частотного спектра, которому соответствует максимальное значение. Этот номер jmax является грубой оценкой количества периодов сигнала.

4. Создают 2k+l эталонных сигналов по форме соответствующих исходному, количество периодов эталонных сигналов смещают по отношению к исходному на величину jmax*(s/k-l)*b, где s=0, 1, 2,способ измерения частоты сигнала, патент № 2478213 2k, b - постоянный коэффициент, задаваемый от 0 до 1 в зависимости от величины возможной ошибки грубой оценки количества периодов сигнала, например, b=0.1, если возможная ошибка равна 10%, при этом k=3. Если возможна ошибка до 90%, то задают значение b=0.9, при этом k=25. Коэффициент b=0способ измерения частоты сигнала, патент № 2478213 1 определяет размер окрестности вблизи количества периодов входного сигнала. В этой окрестности будут находиться значения количества периодов эталонных сигналов.

5. Вычисляют коэффициенты корреляции эталонных сигналов с исходным. Результат представляется в виде числового массива, содержащего 2k+l элементов, каждому элементу соответствует число m=jmax+j max*(s/k-l)*b и значение коэффициента корреляции KK[m].

6. Производят аппроксимацию зависимости коэффициентов корреляции эталонных сигналов с исходным KK(m) от числа m, которое определяет значения количества периодов эталонных сигналов m=j max+jmax*(s/k-l)*b.

7. Производят передискретизацию на основе найденной аппроксимирующей зависимости F(m) для массива KK[m] с увеличением количества элементов массива в R раз, т.е. формируют массив KK1[m1], где m 1=jmax+jmax*(s1/(k*R)-l)*b, s1=0, 1, 2,способ измерения частоты сигнала, патент № 2478213 2k*R, R - коэффициент передискретизации, например, равный 10.

8. Определяют значение m1max массива KK1[m1], которому соответствует максимальное значение коэффициента корреляции KK1.Значение m1max принимают за уточненное количество периодов исходного сигнала.

9. Повторяют далее все предыдущие операции обработки сигнала, начиная с п.4, уменьшая каждый раз величину b, определяющую размер окрестности вблизи приближенного значения количества периодов сигнала, в качестве приближенного значения количества периодов сигнала выбирают значение m1mах, определенное в п.8. Повторение операций обработки прекращают после достижения требуемой точности оценки количества периодов исходного сигнала, точность оценивают по величине разности между вычисленными значениями количества периодов в результате текущего и предыдущего приближений.

10. Вычисляют значение частоты f=m1max /(N*dt), где m1max - уточненное количество периодов исходного сигнала, dt - шаг дискретности по времени при измерении сигнала.

Способ обеспечивает увеличение точности измерения количества периодов и частоты сигнала в несколько раз за счет многократного повторения операций обработки сигнала с одновременным уменьшением размера окрестности вблизи приближенного значения количества периодов анализируемого сигнала.

Класс G01R23/00 Устройства для измерения частоты, анализаторы спектра частот

способ определения нелинейных искажений преобразования полосовых сигналов объектом -  патент 2529445 (27.09.2014)
устройство для измерения гармонических искажений электрического сигнала и его производных с высокой помехозащищенностью -  патент 2522827 (20.07.2014)
асинхронный панорамный радиоприемник -  патент 2521702 (10.07.2014)
способ измерения частоты радиосигнала в акустооптическом приемнике-частотомере -  патент 2521200 (27.06.2014)
способ измерения синхрофазора режимного параметра энергосистемы и устройство для его осуществления -  патент 2519810 (20.06.2014)
способ определения параметров широкополосного сигнала -  патент 2517799 (27.05.2014)
цифровой измеритель частоты -  патент 2517783 (27.05.2014)
устройство для измерения частоты сетевого напряжения при несинусоидальных помехах -  патент 2517759 (27.05.2014)
способ расширения полосы частот оценки спектров сигналов -  патент 2516763 (20.05.2014)
способ доплеровской фильтрации ионосферных сигналов -  патент 2516589 (20.05.2014)
Наверх