быстрозакристаллизованный сплав на основе алюминия для изготовления поршней

Классы МПК:C22C21/02 с кремнием в качестве следующего основного компонента
Автор(ы):, ,
Патентообладатель(и):Открытое акционерное общество "Всероссийский институт легких сплавов" (ОАО "ВИЛС") (RU)
Приоритеты:
подача заявки:
2011-11-18
публикация патента:

Изобретение относится к области металлургии сплавов, в частности к быстрозакристаллизованным деформируемым термически упрочняемым сплавам на основе системы Al-Si, и может быть использовано для производства поршней двигателей внутреннего сгорания и дизельных двигателей. Сплав на основе алюминия, получаемый методом быстрой кристаллизации, содержит следующие компоненты, в мас.%: кремний 16,0-19,5; медь 3,0-5,0; магний 0,7-1,2; марганец 0,3-0,7; железо 0,9-1,5; титан 0,2-0,5; цирконий 0,15-0,4; оксид алюминия 0,01-0,3; церий 0,001-0,005; никель до 1,3. Сплав, предназначенный для изготовления поршней, обладает высоким комплексом физико-механических, эксплуатационных и экологических характеристик. 2 табл., 3 пр.

Формула изобретения

Быстрозакристаллизованный деформируемый сплав на основе алюминия для изготовления поршней, содержащий кремний, медь, магний, никель, марганец, железо, титан, отличающийся тем, что он дополнительно содержит цирконий, оксид алюминия и церий при следующем соотношении компонентов, мас.%:

кремний 16,0-19,5
медь 3,0-5,0
магний 0,7-1,2
марганец 0,3-0,7
железо 0,9-1,5
титан 0,2-0,5
цирконий 0,15-0,4
никель до 1,3
оксид алюминия 0,01-0,3
церий 0,001-0,005

Описание изобретения к патенту

Изобретение относится к области металлургии сплавов, в частности к быстрозакристаллизованным деформируемым термически упрочняемым сплавам на основе системы Al-Si, и может быть использовано для производства поршней двигателей внутреннего сгорания и дизельных двигателей, которые по сравнению с поршнями, изготовленными деформацией из слитка или отливкой в форму, обладают более высоким комплексом физико-механических, эксплуатационных и экологических характеристик. Кроме того, данный сплав может использоваться для изготовления других деталей, от которых требуется высокая износостокость, жаропрочность, низкий коэффициент термического расширения, размерная стабильность и т.п.

Известен жаропрочный деформируемый сплав на основе алюминия АК4-1, применяемый также для изготовления деталей поршневых двигателей, содержащий, вес.%: медь 1,9-2,7; магний 1,2-1,8; марганец 0,2; железо 0,8-1,4; кремний 0,35; титан 0,02-0,1; никель 0,8-1,4; цинк 0,3; хром 0,1; алюминий остальное (ГОСТ 4784-97 "Алюминий и сплавы алюминиевые деформируемые. Марки").

Недостатком этого сплава является относительно низкая износостойкость, а также высокий коэффициент линейного расширения (быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 =22×10-6 1/град при Тисп. 20°C). Это снижает ресурс работы поршней, требует применения больших зазоров между поршнем и цилиндром, что приводит к увеличению эмиссии выхлопных газов, снижению мощности, увеличению шума двигателя.

Известен литейный сплав на основе алюминия АК18, предназначенный для отливки поршней в различные формы, а также для литья под давлением, содержащий, вес.%: медь 0,8-1,5; магний 0,8-1,3; марганец 0,2; железо 0,5; кремний 17,0-19,0; титан 0,2; никель 0,8-1,3; цинк 0,2; олово 0,001; свинец 0,005 (ГОСТ 30620-98 «Сплавы алюминиевые для производства поршней») - прототип.

Данный сплав обладает относительно низким коэффициентом линейного расширения (быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 =19,5×10-6 1/град при Тисп. 20°C).

Недостатком сплава АК18 является то, что после отливки поршней в различные формы, а также после литья под давлением в структуре сплава присутствуют кристаллы кремния крупных размеров (в зависимости от условий литья от 100 до 400 мкм), располагающиеся неравномерно, иногда строчечно, что ослабляет сплав и может вызвать образование трещин. Хотя частицы первичного кремния обеспечивают относительно высокую износостойкость за счет того, что они создают сопротивление воздействию контртела, в процессе эксплуатации поршней может происходить их выкрашивание.

Еще одним недостатком сплава АК18 является относительно мягкая матрица, в результате чего под воздействием контртела происходит вдавливание частиц кремния в матрицу, что снижает износостойкость сплава.

Уровень прочности сплава АК18 относительно низкий как при комнатной температуре (быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 в=250-270 МПа), так и при повышенной. Кроме того, сплав имеет низкие пластические свойства (относительное удлинение 0,6-0,8%), что иногда вызывает разрушение поршня в процессе эксплуатации в месте канавки первого компрессионного кольца, а также в отверстиях под пальцы поршня.

Задачей изобретения является повышение физико-механических и эксплуатационных характеристик сплава, предназначенного для изготовления поршней.

Это достигается изменением химического состава и структуры сплава за счет дополнительного легирования и быстрой скорости охлаждения при кристаллизации.

Технической задачей изобретения является разработка деформируемого сплава на основе системы Al-Si для производства поршней двигателей внутреннего сгорания и дизельных двигателей с повышенным уровнем физико-механических свойств и эксплуатационных характеристик.

Техническим результатом предлагаемого изобретения является получение материала из алюминиевого сплава на основе системы Al-Si, обеспечивающего увеличение мощности, снижение шума, уменьшение эмиссии выхлопных газов при использовании поршней двигателей, изготовленных из этого материала.

Указанный технический результат достигается тем, что предложен деформируемый сплав на основе алюминия, получаемый методом быстрой кристаллизации, за счет чего удается ввести повышенное количество малорастворимых в равновесных условиях циркония, титана, диспергировать избыточные фазы, образованные никелем и железом, измельчить первичные кристаллы кремния либо изменить фазовый состав сплава, обеспечив формирование эвтектической структуры.

В предлагаемый сплав, содержащий кремний, медь, магний, никель, марганец, железо, титан, дополнительно вводят цирконий, оксид алюминия и церий при следующем соотношении компонентов в мас.%: кремний 16,0-19,5; медь 3,0-5,0; магний 0,7-1,2; марганец 0,3-0,7; железо 0,9-1,5; титан 0,2-0,5; цирконий 0,15-0,4; оксид алюминия 0,01-0,3; церий 0,001-0,005; никель до 1,3.

Цирконий в количестве 0,15-0,4% вводят в сплав для повышения прочностных свойств сплава при комнатной и повышенной температурах, упрочнения (повышения твердости) матрицы и, как следствие, повышения износостойкости.

Оксид алюминия в количестве 0,01-0,3% вводят в сплав технологически, в виде поверхностной оксидной пленки гранул. Частицы оксида алюминия не взаимодействуют с матрицей сплава, сохраняют стабильность формы и размеров в процессе эксплуатации, что способствует повышению жаропрочности.

Церий в количестве 0,001-0,005 вводят как поверхностно-активный компонент, который способствует защите поверхности гранул от окисления.

Высокая скорость охлаждения при кристаллизации способствует измельчению частиц кремния до размера не более 20 мкм, измельчает фазы, образованные железом с алюминием, марганцем или никелем, что повышает жаропрочность сплава.

Титан и цирконий в указанных количествах растворяются в алюминии. При последующих технологических нагревах сплава происходит распад твердого раствора и упрочнение сплава по механизму дисперсионного твердения за счет выделения фаз Al3Zr и Al3Ti.

Марганец упрочняет твердый раствор, а медь и магний упрочняют сплав в результате термообработки (закалки и старения), в результате образования дисперсных фаз CuAl2 и Mg2Si.

Таким образом, в сплаве удается сформировать структуру, которая обеспечивает высокую износостойкость: дисперсные частицы первичного кремния размером до 20 мкм, равномерно распределенные по объему матрицы, упрочненной цирконием, титаном, марганцем, магнием и медью. Избыточные фазы, образованные железом или железом и никелем, дисперсные частицы оксида алюминия также способствуют повышению износостойкости и жаропрочности сплава.

Заявленные пределы легирования сплава легирующими компонентами обеспечивают возможность получения оптимальной дисперсности фаз.

Введение церия, препятствуя окислению поверхности гранул, способствует лучшему схватыванию гранул между собой и, соответственно, улучшению качества поршней, исключает образование таких дефектов, как расслоения, рыхлоты и т.п.

Примеры опробования и испытания сплавов, соответствующих по составу предлагаемому изобретению.

В таблице 1 представлен химический состав опробованных вариантов предложенного сплава.

Таблица 1.
Химический состав известного и вариантов предлагаемого сплава.
Сплав № сплава Содержание компонентов, масс.%
SiCu MgMn FeTi ZrNi Al2O3 CeAl
Прототип АК1818,2 1,21,1 0,150,35 0,12- 1,1- -осн
Предложенные варианты сплава 116,2 4,00,9 0,51,1 0,350,39 1,10,27 0,004осн
2 18,33,8 0,80,4 1,30,25 0,150,7 0,020,002 осн
3 19,1 3,21,1 0,61,4 0,430,24 00,1 0,003осн

Сплав получали на установке центробежного литья с охлаждением капель расплава в воде, при этом скорость охлаждения была 103-104 К/с. Изготовление заготовок для последующего производства поршней осуществляли по схеме: сушка гранул при температуре 250°C; рассев гранул на фракцию -1,6+0,4 мм; засыпка гранул в технологические алюминиевые капсулы; вакуумная ступенчатая дегазация при температуре верхней ступени 450°C, герметизация капсулы и подача ее в контейнер диаметром 310 мм гидравлического пресса усилием 5000 тс, температура контейнера 400°C; компактирование при максимальном усилии пресса в течение 3 минут; механическая обработка компактированной заготовки для снятия остатков алюминиевой капсулы; прессование прутка диаметром 90 мм из нагретой до 400°C заготовки на прессе усилием 5000 т. Из прутка на вертикальном прессе в НЛП «Автотехнология» была проведена изотермическая штамповка заготовок поршней. Физико-механические свойства прутков после закалки и искусственного старения представлены в таблице 2.

Таблица 2.
Физико-механические свойства прутков.
Сплав № сплаваТ исп, °С быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 В, МПа быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 0,2 МПа быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 , %НВ, МПа КТЛР, 1×10 -6 1/град Диам. пятна износа при Т-300°С, мм
Прототип АК 1820 255- 0,71050 19,54,8
250 120быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105
Предлагаемый 120 420360 4,51600 183,0
250 170быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105
220 370330 4,51500 17,52,8
250 165быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105
320 390340 5,01550 172,7
250 185быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105 быстрозакристаллизованный сплав на основе алюминия для изготовления   поршней, патент № 2468105

Таким образом, предложенные составы сплавов обеспечивают повышение износостойкости, более высокую прочность при комнатной и повышенной температуре и более высокую пластичность, более низкий коэффициент линейного расширения. Это, в итоге, обеспечивает повышение ресурса работы поршней, работоспособность поршней при форсированных режимах двигателей, увеличение мощности двигателей, улучшение экологических характеристик двигателей (снижение шума, уменьшение эмиссии выхлопных газов).

Класс C22C21/02 с кремнием в качестве следующего основного компонента

алюминиевый сплав для прецизионного точения серии аа 6ххх -  патент 2522413 (10.07.2014)
порошковый композиционный материал -  патент 2509817 (20.03.2014)
активный материал отрицательного электрода на основе кремниевого сплава для электрического устройства -  патент 2508579 (27.02.2014)
способ получения наноразмерных порошков алюминий-кремниевых сплавов -  патент 2493281 (20.09.2013)
способ модифицирования алюминиево-кремниевых сплавов -  патент 2475550 (20.02.2013)
содержащие магний высококремниевые алюминиевые сплавы, используемые в качестве конструкционных материалов, и способ их изготовления -  патент 2463371 (10.10.2012)
способ приготовления мелкокристаллической алюминиево-кремниевой лигатуры -  патент 2448180 (20.04.2012)
антифрикционный сплав на основе алюминия -  патент 2441932 (10.02.2012)
способ модифицирования чугуна и силумина -  патент 2439166 (10.01.2012)
способ получения алюминиево-кремниевого сплава -  патент 2432411 (27.10.2011)
Наверх