способ получения диоксида олова

Классы МПК:C01G19/02 оксиды 
B82B1/00 Наноструктуры
Автор(ы):, , , ,
Патентообладатель(и):Государственное образовательное учреждение высшего профессионального образования Томский политехнический университет (RU)
Приоритеты:
подача заявки:
2010-02-01
публикация патента:

Изобретение может быть использовано в химической промышленности. Способ получения диоксида олова включает электрохимическое окисление металлического олова. Окисление проводят в растворе хлорида натрия с концентрацией 3-25 мас.% при плотности переменного синусоидального тока 1,0-3,0 А/см2 промышленной частоты 50 Гц и температуре 100°С. Полученный порошок диоксида олова сушат при 120°С в течение 3 часов. Изобретение позволяет получить диоксид олова с высокой удельной площадью поверхности. 1 табл.

Формула изобретения

Способ получения диоксида олова, включающий электрохимическое окисление металла, отличающийся тем, что окисление проводят в нейтральном растворе хлорида натрия с концентрацией 3-25 мас.% при плотности переменного синусоидального тока 1,0-3,0 А/см 2 промышленной частоты и температуре 100°С, сушку полученного порошка проводят при 120°С в течение 3 ч.

Описание изобретения к патенту

Изобретение относится к технологии получения диоксида олова с высокой удельной поверхностью, которая может варьироваться в процессе электролиза.

Известен способ получения диоксида олова, заключающийся в обработке концентрированным водным раствором аммиака хлорида олова (II) (Чистые химические вещества. Карякин Ю.В. Ангелов И.И. Химия, 1974).

Недостатком данного изобретения является то, что обработку проводят раствором аммиака высокой концентрации.

Наиболее близкий по технической сущности является способ получения гидроокисей переходных элементов, заключающийся в электролитическом получении гидроокисей переходных элементов (SU 579346, C01G 23/04, Бюл. № 41, 1977).

Недостатком данного изобретения является необходимость использования кислых растворов и применение инертных электродов.

Задачей предлагаемого изобретения является повышение качества продукта за счет уменьшения размера частиц, увеличения удельной площади поверхности.

Достигается это тем, что электрохимическое окисление металлического олова в нейтральном растворе хлорида натрия с концентрацией 3-25 мас.% осуществляют с помощью переменного синусоидального тока промышленной частоты (50 Гц) при плотности тока 1,0-3,0 А/см 2, при температуре 100°С. Полученный таким образом порошок отмывают и подвергают сушке при 120°С в течение 3 часов.

Интервал плотностей тока обуславливается тем, что при плотности тока ниже 1,0 А/см2 скорость процесса низкая и выход продукта также низок; при плотности тока выше 3,0 А/см2 происходит интенсивный разогрев электролита и его выкипание, то есть требуется дополнительное охлаждение ячейки.

При концентрации NaCl 25 мас.% скорость процесса имеет минимальное значение, при уменьшении концентрации NaCl до 3 мас.% скорость процесса существенно повышается.

Пример 1. В электролизер заливают электролит - нейтральный раствор хлорида натрия с концентрацией 3 мас.%. Туда же помещают оловянные электроды на глубину, соответствующую плотности тока 1,0 А/см2. Через ячейку пропускают переменный синусоидальный ток промышленной частоты (50 Гц). Ячейку термостатируют при температуре 100°С. По окончании процесса полученный порошок отмывают и подвергают сушке в течение 3-х часов при температуре 120°С, размер частиц 29 нм, удельная поверхность 36,3 м2/г.

Пример 2. Процесс проводят аналогично примеру 1. Концентрация хлорида натрия 3 мас.%. Плотность тока 2,5 А/см 2, размер частиц 20 нм, удельная поверхность 35,6 м 2/г.

Пример 3. Процесс проводят аналогично примеру 1. Концентрация хлорида натрия 15 мас.%. Плотность тока 1,0 А/см2, размер частиц 15 нм, удельная поверхность 28,6 м2/г.

Пример 4. Процесс проводят аналогично примеру 1. Концентрация хлорида натрия 15 мас.% при плотности тока 2,5 А/см2, размер частиц 5 нм, удельная поверхность 77,4 м2/г.

Пример 5. Процесс проводят аналогично примеру 1. Концентрация хлорида натрия 25 мас.%. Плотность тока 1,0 А/см2, размер частиц 8 нм, удельная поверхность 14,0 м2/г.

Пример 6. Процесс проводят аналогично примеру 1. Концентрация хлорида натрия 25 мас.%. Плотность тока 2,5 А/см2, размер частиц 4 нм, удельная поверхность 38,3 м2/г.

Пример 7. Процесс проводят аналогично примеру 1. Концентрация хлорида натрия 3 мас.%. Плотность тока 3,0 А/см2, размер частиц 18 нм, удельная поверхность 60,8 м2/г.

Пример 8. Процесс проводят аналогично примеру 1. Концентрация хлорида натрия 5 мас.%. Плотность тока 3,0 А/см 2, размер частиц 5 м, удельная поверхность 75,2 м2 /г.

Пример 9. Процесс проводят аналогично примеру 1. Концентрация хлорида натрия 15 мас.%. Плотность тока 3,0 А/см 2, размер частиц 2 нм, удельная поверхность 87,4 м 2/г.

Полученный по предлагаемому способу диоксид олова обладает высокой удельной площадью поверхности. Достигается это проведением электросинтеза в условиях максимально удаленных от состояния равновесия. Достичь таких условий позволяет применение переменного синусоидального тока промышленной частоты. Характеристики диоксида олова, полученного данным способом, приведены в таблице.

Образец Концентрация электролита, мас.% Плотность тока, А/см2 Температура термообработки, °С Размер частиц, нм Удельная поверхность, м2
Пример 13 1,0120 2936,3
Пример 2 32,5 12020 35,6
Пример 315 1,0120 1528,6
Пример 4 152,5 1205 77,4
Пример 525 1,0120 814,0
Пример 6 252,5 1204 38,3
Пример 73 3120 1860,8
Пример 8 53 1205 75,2
Пример 915 3120 287,4

Класс C01G19/02 оксиды 

способ получения чернил на основе наночастиц диоксида олова легированного сурьмой для микропечати -  патент 2507288 (20.02.2014)
способ получения фотонно-кристаллических структур на основе металлооксидных материалов -  патент 2482063 (20.05.2013)
способ получения монооксида олова в условиях гидротермально-микроволновой обработки -  патент 2455236 (10.07.2012)
способ получения оксида олова (iv) -  патент 2450973 (20.05.2012)
способ получения олово- и сурьмусодержащих оксидов -  патент 2201397 (27.03.2003)
порошок оксида металла, порошок оксида титана, способ получения порошка оксида металла -  патент 2127221 (10.03.1999)
способ получения высокодисперсных оксидов -  патент 2119454 (27.09.1998)
способ получения оксида металла -  патент 2106307 (10.03.1998)

Класс B82B1/00 Наноструктуры

многослойный нетканый материал с полиамидными нановолокнами -  патент 2529829 (27.09.2014)
материал заменителя костной ткани -  патент 2529802 (27.09.2014)
нанокомпозитный материал с сегнетоэлектрическими характеристиками -  патент 2529682 (27.09.2014)
катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ определения направления перемещения движущихся объектов от взаимодействия поверхностно-активного вещества со слоем жидкости над дисперсным материалом -  патент 2529657 (27.09.2014)
способ формирования наноразмерных структур -  патент 2529458 (27.09.2014)
способ бесконтактного определения усиления локального электростатического поля и работы выхода в нано или микроструктурных эмиттерах -  патент 2529452 (27.09.2014)
способ изготовления стекловидной композиции -  патент 2529443 (27.09.2014)
комбинированный регенеративный теплообменник -  патент 2529285 (27.09.2014)
способ изготовления тонкопленочного органического покрытия -  патент 2529216 (27.09.2014)
Наверх