коррозионно-стойкая сталь для насосно-компрессорных и обсадных труб

Классы МПК:C22C38/28 с титаном или цирконием
Автор(ы):, , , , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью "Самарский инженерно-технический центр" (RU)
Приоритеты:
подача заявки:
2009-10-06
публикация патента:

Изобретение относится к области металлургии, а именно к легированным коррозионно-стойким сталям, предназначенным для изготовления насосно-компрессорных и обсадных труб, а также скважинного оборудования, эксплуатирующихся в агрессивных средах, содержащих сероводород и углекислый газ. Сталь содержит углерод, кремний, марганец, хром, молибден, ванадий, ниобий, алюминий, цирконий, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,03-0,12, кремний 0,17-0,40, марганец 0,40-0,70, хром 1,20-2,00, молибден 0,15-0,30, ванадий от 0,04 до менее 0,05, ниобий 0,03-0,06, алюминий от более 0,05 до не более 0,06, цирконий 0,01-0,07, железо и неизбежные примеси - остальное. Достигается наилучшее соотношение прочностных характеристик и коррозионной стойкости, которое обеспечивает возможность ее использования для изготовления насосно-компрессорных и обсадных труб, эксплуатирующихся в агрессивных средах, содержащих H2S и СO2 . 4 табл.

Формула изобретения

Коррозионно-стойкая сталь для насосно-компрессорных и обсадных труб, содержащая углерод, кремний, марганец, хром, молибден, ванадий, ниобий, алюминий, железо и неизбежные примеси, отличающаяся тем, что дополнительно содержит цирконий при следующем соотношении компонентов, мас.%:

углерод0,03-0,12
кремний 0,17-0,40
марганец0,40-0,70
хром 1,20-2,00
молибден0,15-0,30
ванадий от 0,04 до менее 0,05
ниобий0,03-0,06
алюминий от более 0,05 до не более 0,06
цирконий 0,01-0,07
железо и неизбежные примеси остальное

Описание изобретения к патенту

Изобретение относится к области металлургии, в частности к легированным сталям, предназначенным для изготовления насосно-компрессорных и обсадных труб, а также скважинного оборудования, эксплуатирующихся в агрессивных средах, содержащих сероводород и углекислый газ.

Как известно, высокопрочные обсадные и насосно-компрессорные трубы обычно изготавливают из легированной хромомолибденовой или хромоникельмолибденовой стали. Например, согласно стандарту API 5CT/ISO 11960 для труб группы прочности L80 типа 9Сг, предназначенных для скважин с сернистой средой, используется сталь, содержащая не более 0,15% углерода, 0,30-0,60% марганца, не более 1,00% кремния, 0,90-1,10% молибдена, 8,00-10,0% хрома, не более 0,50% никеля, не более 0,25% меди. Однако трубы из указанной стали не обладают стойкостью к сульфидному коррозионному растрескиванию под напряжением (СКРН), а также имеют низкую хладостойкость, что не позволяет использовать их в условиях Крайнего Севера.

Известна также экономнолегированная сталь 12Х2МФБ (Марочник сталей и сплавов./Под ред. А.С.Зубченко, М., «Машиностроение», 2003, стр.245), имеющая следующий химический состав, мас.%:

углерод0,08-0,12
кремний 0,40-0,70
марганец0,40-0,70
хром 2,10-2,60
молибден0,50-0,70
ванадий 0,20-0,35
ниобий0,50-0,80
никель не более 0,25
медьне более 0,25
фосфор не более 0,025
серане более 0,025
железо остальное

Указанная сталь имеет достаточную стойкость к сульфидному растрескиванию в сероводородсодержащей среде, но не обладает стойкостью к углекислотной и бактериальной коррозии и не имеет необходимых прочностных свойств, поскольку для связывания карбидообразующих элементов в карбиды, обеспечивающие упрочнение по дисперсионному механизму упрочнения, в этой стали недостаточно углерода.

Вышерассмотренные стали не содержат модифицирующие добавки, что сказывается на морфологии и фазовом составе неметаллических включений. В стали образуются удлиненные сульфиды (Fe,Mn)S и округлые оксиды алюминия. Данный фазовый состав неметаллических включений приводит к значительному снижению коррозионной стойкости и пластичности стали.

Наиболее близкой к заявляемому изобретению по совокупности существенных признаков является коррозионно-стойкая сталь по патенту РФ № 2361958, МПК С22С 38/26, содержащая, мас.%:

углерод0,03-0,12
кремний 0,17-0,40
марганец0,40-0,70
хром 0,50-1,20
молибден0,15-0,30
ванадий 0,04-0,10
ниобий0,03-0,06
алюминий не более 0,06
РЗМ 0,002-0,016
железо и неизбежные примеси остальное

Данная сталь имеет хорошую коррозионную стойкость в агрессивных средах, однако не обладает необходимыми прочностными характеристиками, позволяющими использовать ее для изготовления насосно-компрессорных и обсадных труб группы прочности «Д» (ГОСТ 633-80).

Задачей, на решение которой направлено предлагаемое изобретение, является расширение арсенала экономнолегированных сталей для изготовления насосно-компрессорных и обсадных труб, обеспечивающих как необходимый уровень механических свойств, так и стойкость к коррозии в различных агрессивных средах.

Поставленная задача решается за счет того, что коррозионно-стойкая сталь для насосно-компрессорных и обсадных труб, содержащая углерод, кремний, марганец, хром, молибден, ванадий, ниобий, алюминий, железо и неизбежные примеси, в отличие от прототипа дополнительно содержит цирконий при следующем соотношении компонентов, мас.%:

углерод0,03-0,12
кремний 0,17-0,40
марганец0,40-0,70
хром 1,20-2,00
молибден0,15-0,30
ванадий от 0,04 до менее 0,05
ниобий0,03-0,06
алюминий от более 0,05 до не более 0,06
цирконий 0,01-0,07
железо и неизбежные примеси остальное.

Технический результат, обеспечиваемый при реализации описываемого изобретения, заключается в следующем. Как показали проведенные исследования, микродобавки циркония оказывают упрочняющее влияние на сталь, что особенно заметно проявилось при очень малых количествах этого элемента. Цирконий имеет большее сродство к углероду, чем хром, молибден, ванадий и ниобий. При этом образуются дисперсные карбиды и карбонитриды. Прирост прочности стали с цирконием, по-видимому, можно объяснить тем, что, во-первых, происходит образование мелкодисперсных карбидов циркония, располагающихся по мало- и высокоугловым границам, во-вторых, в структуре стали при нагреве до 1000°С сохраняются дисперсные карбонитриды циркония, сдерживающие рост аустенитного зерна, что обуславливает получение наследственной мелкозернистой структуры стали. В малых количествах цирконий упрочняет феррит, измельчая блочную структуру стали. Кроме этого, цирконий оказывает стабилизирующее воздействие на микро- и субструктуру стали, существенно замедляя процессы превращения аустенита при охлаждении и снижая скорость протекания рекристаллизации феррита. Добавка циркония оказывает влияние на кинетику превращения аустенита стали, замедляя диффузию углерода в твердом растворе, что приводит к стабильности аустенита и, следовательно, к сдвигу в сторону большей выдержки превращения аустенита в феррит. При этом, как подтвердили наши исследования, при указанных количествах циркония в стали ее упрочнение достигается без снижения пластичности, что обуславливается эффектом растворения циркония в стали и измельчением его субструктуры, обеспечивающим мелкозернистую структуру стали. За счет того, что цирконий имеет большее сродство к углероду, чем хром, его карбиды более стабильны и выделяются раньше, чем карбиды хрома. Предложенные диапазоны содержания углерода и циркония таковы, что почти весь углерод оказывается связанным в карбиды или карбонитриды циркония, а большая часть хрома остается в твердом растворе, что значительно повышает стойкость стали к углекислотной и бактериальной коррозии. Повышение содержания хрома в предложенном составе по сравнению с прототипом до 2,00 мас.% также приводит к существенному повышению коррозионной стойкости стали. Цирконий обладает высоким химическим сродством не только к углероду, но и кислороду, сере и азоту. За счет введения циркония изменяются морфология и фазовый состав сульфидов, а также не создаются цепочки неметаллических включений, снижающих пластические и коррозионные свойства металла.

Сущность предлагаемого изобретения и обеспечиваемый им технический результат поясняются данными проведенных экспериментов, представленными в таблицах, где в Таблице 1 приведены варианты химического состава стали, в Таблице 2 - механические свойства, в Таблице 3 - результаты испытаний на стойкость к сульфидной и углекислотной коррозии, в Таблице 4 - результаты испытаний на стойкость к биокоррозии (оценивается как количество клеток СВБ-бактерий в поле зрения при увеличении ×3000).

Таблица 1
№ п/п Массовые доли элементов, %
СSi MnCr MoAl VNb ZrРЗМ
1 0,050,17 0,701,25 0,230,05 0,040,04 0,04-
2 0,080,35 0,481,74 0,250,04 0,060,07 0,07-
3 0,120,40 0,532,00 0,150,03 0,100,03 0,06-
4 0,030,28 0,401,20 0,300,06 0,050,06 0,01-
Прототип 0,110,26 0,560,50 0,200,06 0,060,06 -0,002

Таблица 2
№ п/пПредел прочности, коррозионно-стойкая сталь для насосно-компрессорных и обсадных   труб, патент № 2414521 в, МПа Предел текучести, коррозионно-стойкая сталь для насосно-компрессорных и обсадных   труб, патент № 2414521 г, МПа Ударная вязкость, KCV-60, Дж/см2 Доля вязкой составляющей в изломе, %
1686 569244 86
2 758 614182 60
3 779 630268 94
4 617 524270 95
Прототип 520 420170 60

Таблица 3
№ п/пСтойкость к СКРН по NACE ТМ0177, метод А, oth, % от коррозионно-стойкая сталь для насосно-компрессорных и обсадных   труб, патент № 2414521 г Скорость CO2-коррозии, Тисп 60°С, мм/год
185 0,8
2 80 0,6
3 90 0,5
4 80 0,9
Прототип 80 1,0

Таблица 4
№ п/пКоличество клеток в поле зрения при ×3000, шт.
115
2 12
3 9
421
Прототип 30

Как видно из приведенных данных, предложенный состав стали и количественное содержание компонентов обеспечивают такую совокупность механических свойств стали и ее коррозионной стойкости, которая отсутствует у известных из уровня техники аналогов. Также следует отметить, что при содержании хрома в стали менее 1,20 мас.% не обеспечивается стойкость к углекислотной коррозии, а при содержании хрома свыше 2,00 мас.% ухудшается стойкость к СКРН. Введение циркония положительно сказывается на стойкости стали к сульфидной коррозии, т.к. он связывает серу в оксисульфиды и гидриды. При этом концентрация циркония менее 0,04 мас.% оказалась недостаточной для связывания серы в сульфиды (оксисульфиды) циркония, а при увеличении содержания циркония выше 0,06 мас.% происходило излишнее обогащение границ зерен цирконием, что обуславливает склонность стали к межзеренному разрушению и, следовательно, ведет к уменьшению вязкости, повышению температуры хрупко-вязкого перехода и снижению стойкости к СКРН.

Таким образом, предложенная сталь при экономном поликомпонентном легировании имеет наилучшее по сравнению с известными аналогами соотношение прочностных характеристик и коррозионной стойкости, которое обеспечивает возможность ее использования для изготовления насосно-компрессорных и обсадных труб, эксплуатирующихся в агрессивных средах, содержащих H2S и CO2.

Класс C22C38/28 с титаном или цирконием

нержавеющая сталь с хорошей коррозионной стойкостью для топливного элемента и способ ее получения -  патент 2528520 (20.09.2014)
нержавеющая сталь, обладающая хорошими проводимостью и пластичностью, для применения в топливном элементе, и способ ее производства -  патент 2518832 (10.06.2014)
способ производства проката из низколегированной стали для изготовления элементов конструкций нефтегазопроводов -  патент 2500820 (10.12.2013)
ферритная нержавеющая сталь, характеризующаяся высокой жаростойкостью -  патент 2458175 (10.08.2012)
способ производства листов из низколегированной трубной стали класса прочности х60 -  патент 2458156 (10.08.2012)
сталь -  патент 2445395 (20.03.2012)
штамповая сталь -  патент 2445394 (20.03.2012)
ферритная нержавеющая сталь с превосходной жаростойкостью и вязкостью -  патент 2443796 (27.02.2012)
коррозионно-стойкая сталь для насосно-компрессорных и обсадных труб и нефтегазодобывающего оборудования -  патент 2437955 (27.12.2011)
коррозионно-стойкая сталь для нефтегазодобывающего оборудования -  патент 2437954 (27.12.2011)
Наверх