способ моделирования миопической болезни глаз

Классы МПК:A61F9/00 Способы и устройства для лечения глаз; приспособления для вставки контактных линз; устройства для исправления косоглазия; приспособления для вождения слепых; защитные устройства для глаз, носимые на теле или в руке
G09B23/28 в медицине 
Автор(ы):, , , ,
Патентообладатель(и):Обрубов Сергей Анатольевич (RU),
Беспалюк Юлия Георгиевна (RU),
Иванова Алевтина Олеговна (RU),
Кузнецова Елена Андреевна (RU),
Демидова Мария Юрьевна (RU)
Приоритеты:
подача заявки:
2009-07-13
публикация патента:

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано в научной и клинической практике при разработке консервативных и оперативных методов лечения дегенеративной близорукости. В зону экватора глаза экспериментальных животных под конъюнктиву в верхне-наружном и верхне-внутреннем сегментах 1 раз в 3 дня вводится по 0,5 мл раствора пролонгированного ферментного препарата Лонгидазы 3000 ME в сочетании с ежедневным введением в эти же сегменты по 0,5 мл гипертонического 5% раствора хлорида натрия. Способ позволяет повысить точность воспроизведения патологического процесса, приблизить модель к течению естественной патологии, уменьшить токсико-аллергические реакции и уменьшить продолжительность моделирования.

Формула изобретения

Способ моделирования миопической болезни глаз путем введения ферментативного препарата, отличающийся тем, что в зону экватора глаза экспериментальных животных под конъюнктиву в верхне-наружном и верхне-внутреннем сегментах 1 раз в 3 дня вводят по 0,5 мл раствора ферментного препарата Лонгидазы 3000 ME и дополнительно также в зону экватора глаза под конъюнктиву в верхне-наружном и верхне-внутреннем сегментах ежедневно вводят по 0,5 мл гипертонического 5%-ного раствора хлорида натрия.

Описание изобретения к патенту

Изобретение относится к медицине, а именно к офтальмологии, и может быть использовано в научной и клинической практике при разработке консервативных и оперативных методов лечения близорукости.

Известен способ моделирования осевой миопии, при котором в стекловидное тело кролика вводят 0,05-0,25 мл 33% высокомолекулярного раствора поливинилпирролидона (патент СССР № 1624506, 1988). Однако при проведении патогистологических исследований авторами не было выявлено дистрофических изменений со стороны склеры и других оболочек, что не позволяет говорить о моделировании миопической болезни. Кроме того, введение препарата в стекловидное тело не воспроизводит естественные условия формирования патологии.

Известен способ моделирования миопической болезни глаз, при котором кроликам под конъюнктиву глаза в зону экватора в четырех сегментах вводят свежеприготовленный раствор папаина на физиологическом растворе при 37°С из расчета 0,005 мг на 1 мл раствора по 0,25 мл в каждый сегмент. Клиническими, гистологическими и электронно-микроскопическими исследованиями было доказано развитие миопической болезни у экспериментального животного (патент СССР № 1573466, 1990 г.). Макроскопически на поверхности склеры в области конъюнктивальных сводов определялись зоны истончения склеры в виде типичных миопических стафилом с просвечивающейся через склеру сосудистой оболочкой. Клинически на глазном дне авторы отмечали развитие хориоидальной дистрофии с диспигментацией пигментного эпителия сетчатки, прогрессирующим хориваскулосклерозом и формированием в зоне экватора белых дистрофических очагов. При биомикроскопии выявлено развитие дистрофически изменений в радужке. Определялось усиление клинической рефракции, увеличение переднезаднего размера глаза. При исследовании гемодинамики выявлено уменьшение кровенаполнения сосудистой оболочки глаза. При гистологическом и электронно-микроскопическом изучении склеры и хориоидеи выявлено истончение фиброзной и сосудистой оболочек со значительными нарушениями в структуре коллагеновых волокон и фибрилл, вплоть до их зернистого распада.

Однако способ имеет ряд недостатков: моделирование осуществляют введением препарата в четырех сегментах, что травматично для глаза, нативный ферментный препарат папаин быстро инактивируется системой ингибиторов организма, что требует его ежедневного введения, приводящее к увеличению риска развития токсико-аллергических реакций.

Задачей данного изобретения является воспроизведение миопической болезни с помощью ферментного протеолиза и дополнительного фактора, связанного с развитием реактивной гипертензни в глазном яблоке при использовании нами экспериментально подобранных веществ, их концентраций и объемов их введения.

Задача решается за счет того, что в способе моделирования миопической болезни экспериментальным животным, в частности кроликам породы шиншилла под конъюнктиву глаза в зону экватора в верхне-наружном и верхнее-внутреннем сегментах вводят протеолитический фермент пролонгированного действия - Лонгидаза 3000 ME и дополнительно гипертонический 5% раствор хлорида натрия.

Лонгидаза - это комплексный отечественный фармакологический препарат, представляющий собой конъюгат гиалуронидазы с физиологически активным высокомолекулярным носителем. Конъюгация (ковалентное связывание) гиалуронидазы с полимерным носителем препятствует разворачиванию глобулы фермента, значительно увеличивает устойчивость фермента к денатурации и действию ингибиторов, способствует сохранению нативной структуры и активности фермента и тем самым приводит к длительному действию фермента в организме.

Благодаря указанным свойствам Лонгидаза обладает не только способностью деполимеризовать матрикс соединительной ткани, но и подавлять обратную регуляторную реакцию, направленную на синтез компонентов соединительной ткани.

Подконъюнктивальные инъекции гипертонического 5% раствора хлорида натрия вызывают развитие реактивной гипертензии в глазном яблоке.

Сравнительные результаты экспериментальных исследований на основе ферментного протеолиза показали, что наиболее эффективным для моделирования миопической болезни является сочетанный способ, основанный на ферментативном расщеплении коллагена с методом, периодически повышающим внутриглазное давление. Инъекции под конъюнктиву препарата Лонгидаза 3000 ME в сочетании с дополнительным введением гипертонического 5% раствора хлорида натрия способствуют возникновению дистрофической формы близорукости - миопической болезни с клиническими и морфологическими признаками, характерными для этого процесса.

Таким образом, предложенный способ моделирования миопической болезни по сравнению с прототипом позволяет уменьшить вероятность возникновения токсико-аллергических реакций за счет уменьшения кратности и введения, повысить точность воспроизведения патологического процесса и уменьшить время моделирования за счет сочетания расщепления коллагена ферментным препаратом пролонгированного действия с методом, периодически повышающим внутриглазное давление. Способ выполняется в двух сегментах, прост в исполнении, не требует дорогостоящей аппаратуры и препаратов, может быть использован в научной и клинической практике при разработке консервативных и оперативных методов лечения дегенеративной близорукости.

Способ осуществляется следующим образом.

После анестезии глаза путем трехкратного закапывания 0,4% раствора инокаина в зону экватора, например левого глаза экспериментального животного, под конъюнктиву в верхне-наружном и верхне-внутреннем сегментах 1 раз в 3 дня вводится по 0,5 мл раствора Лонгидазы 3000 ME в сочетании с ежедневным дополнительным введением по 0,5 мл гипертонического 5% раствора хлорида натрия также в зону экватора левого глаза экспериментального животного под конъюнктиву в верхне-наружном и верхне-внутреннем сегментах.

Раствор Лонгидазы 3000 ME готовят следующим образом: содержимое флакона (ампулы) растворяют в 1.5-2 мл 0.9% раствора натрия хлорида или воды для инъекций.

Предложенным способом было проведено моделирование миопической болезни на 6 кроликах-самцах породы «шиншилла» с исходной массой тела 2,0-2,5 кг. Моделирование проводилось на левом глазу животных, правый глаз был контрольным.

Предварительно у подопытных животных проводилось полное офтальмологическое обследование обоих глаз, включающее офтальмоскопию, биомикроскопию (щелевая лампа SL-30 фирмы «Opton», производство Германия), определение клинической рефракции (авторефрактометр «Mirae Optics Charops MRK-2000», производство Япония), определение переднезаднего размера глаза - эхобиометрия (офтальмобиометр «Ultrasonic Biometer Model 820»), исследование микроциркуляции ресничного тела с помощью лазерной доплеровской флуометрии (анализатор ЛАКК-02, производство НПП «ЛАЗМА», НПО «Биофизика», Москва).

Офтальмологический контроль по схеме проводили 1 раз в 2 месяца. Оценку результатов давали по результатам биомикроскопии, офтальмоскопии, авторефрактометрии, ЭХО-биометрии, лазерной доплеровской флуометрии.

Разработанный нами сочетанный метод моделирования миопической болезни позволил получить средний рефракционный эффект через 10 мес - -3,75±0,22 дптр.

При усилении клинической рефракции продемонстрированы первоначальное растяжение глазного яблока во всех направлениях и в последующем преобладание переднезаднего размера глазного яблока, истончение роговицы в центральном отделе и усиление преломляющей силы роговицы в вертикальном меридиане. При моделировании миопической болезни форма глаза от сжатого эллипсоида трансформировалась в шаровидную, а затем приобрела форму вытянутого эллипсоида.

В результате проведенного исследования с помощью лазерной доплеровской флоуметрии выявлены нарушения в микроциркуляции ресничного тела экспериментальных животных при моделировании миопической болезни. Так, среднее значение показателя перфузии (М) ресничного тела на глазах животных с миопической болезнью статистически значимо меньше аналогичного показателя у животных с физиологической клинической рефракцией (p<0,05). При экспериментальной миопической болезни отмечено повышение периферического мышечного сопротивления артериол и уменьшение нутритивного кровотока по артериоловенулярному шунту.

С помощью электронно-микроскопического исследования соединительной ткани склеры глаз кроликов с миопической болезнью установлено, что значительным изменениям подвергается ультраструктурная организация коллагеновых волокон: они истончаются, нарушается естественных ход волокнистых структур, наблюдаются процессы деструктуризации фибрилл, вплоть до зернистого распада. Серьезные изменения при близорукости происходят в микроскопическом строении эластического волокна: наблюдается утолщение гомогенной части с одновременным разрушением микрофибриллярной обертки (фибриллинов). Нарушения в структуре волокнистых компонентов соединительной ткани склеры происходит на фоне увеличения содержания аморфного основного вещества ткани.

Полученные нами морфологические данные относительно ультраструктуры клеточного состава убедительно свидетельствуют о преобладании среди клеток измененной соединительной ткани склеры функционально активных фибробластов. При этом особенности микроскопической организации синтетического и митохондриального аппаратов части клеток отражают напряженность пластических процессов и, как следствие, присутствие в склере клеток с дистрофически-деструктивными изменениями ультраструктуры, а также клеточных форм с бесструктурными зонами. В соединительной ткани склеры в условиях экспериментальной миопической болезни выявлено отсутствие клеток, ультраструктура которых свидетельствует о высоком уровне энергетических и пластических процессов, протекающих в клетках (нет потенциальных возможностей).

Пример осуществления способа.

Кролик обследован путем биомикроскопии, офтальмоскопии, патологии не обнаружено. Проводили анестезию левого глаза животного путем трехкратного закапывания 0,4% раствора инокаина. В зону экватора левого глаза под конъюнктиву в верхне-наружном и верхнее-внутреннем сегментах 1 раз в 3 дня вводился по 0,5 мл раствора Лонгидазы 3000 ME в сочетании с ежедневным введением по 0,5 мл гипертонического 5% раствора хлорида натрия туда же. Токсико-аллергические реакции у животного не были выявлены на протяжении всего времени моделирования.

При обследовании экспериментального животного с 4 по 10 месяц наблюдалось преобладание переднезаднего размера глазного яблока, истончение роговицы в центральном отделе, усиление преломляющей силы роговицы в вертикальном меридиане и усиление клинической рефракции до -3,75 дптр. Исследование с помощью лазерной доплеровской флоуметрии показало выраженные нарушения микроциркуляции в тканях глаза кролика. При электронно-микроскопическом исследовании ткани склеры кролика через 10 месяцев выявлены нарушение ультраструктурной организации волокнистых компонентов соединительной ткани (коллагеновых и эластических волокон), а также присутствие в склере клеток с дистрофически-деструктивными изменениями ультраструктуры, а также клеточных форм с бесструктурными зонами.

Таким образом, приведенный пример подтверждает эффективность предложенного способа моделирования миопической болезни.

Класс A61F9/00 Способы и устройства для лечения глаз; приспособления для вставки контактных линз; устройства для исправления косоглазия; приспособления для вождения слепых; защитные устройства для глаз, носимые на теле или в руке

способ фиксации мягкой интраокулярной линзы при отсутствии капсулярной поддержки -  патент 2529411 (27.09.2014)
устройство для разреза роговицы глаза человека -  патент 2529391 (27.09.2014)
устройство для разрезания роговой оболочки глаза -  патент 2528853 (20.09.2014)
способ хирургического замещения множественных, тотальных и обширных кожных дефектов век, распространяющихся на окружающие зоны лица -  патент 2528650 (20.09.2014)
роговичный сегмент для лечения кератэктазий различного генеза -  патент 2528649 (20.09.2014)
способ факоэмульсификации -  патент 2528633 (20.09.2014)
способ репозиции моноблочной интраокулярной линзы, дислоцированной вместе с капсульным мешком -  патент 2527912 (10.09.2014)
способ осуществления тоннельного разреза для факоэмульсификации -  патент 2527911 (10.09.2014)
способ микроинвазивной непроникающей глубокой склерэктомии при открытоугольной глаукоме -  патент 2527908 (10.09.2014)
способ имплантации интраокулярной линзы больным с эктопией хрусталика -  патент 2527844 (10.09.2014)

Класс G09B23/28 в медицине 

способ моделирования физиологических эффектов пребывания на поверхности планет с пониженным уровнем гравитации -  патент 2529813 (27.09.2014)
способ оценки эффекта электромагнитных волн миллиметрового диапазона (квч) в эксперименте -  патент 2529694 (27.09.2014)
способ анатомо-хирургического моделирования наружной ротационной контрактуры тазобедренного сустава в эксперименте -  патент 2529407 (27.09.2014)
способ моделирования приобретенной токсической гемолитической анемии в эксперименте -  патент 2528976 (20.09.2014)
способ коррекции негативных эффектов низких температур на предстательную железу крыс -  патент 2527172 (27.08.2014)
способ предоперационной подготовки деминерализованного костного трансплантата к пластике в эксперименте -  патент 2527167 (27.08.2014)
способ моделирования синдрома хронической ановуляции -  патент 2527166 (27.08.2014)
способ моделирования сочетанных радиационных поражений, включающих общее гамма- и местное рентгеновское облучение -  патент 2527148 (27.08.2014)
индивидуализированная система обучения как способ формирования профессиональной компетентности врачей-педиатров -  патент 2526945 (27.08.2014)
способ моделирования осложненной стенозом двенадцатиперстной кишки -  патент 2526935 (27.08.2014)
Наверх