каталитические материалы и способ их получения

Классы МПК:B01J29/00 Катализаторы, содержащие молекулярные решетки
C01B39/02 кристаллические алюмосиликатные цеолиты, их изоморфные соединения; прямое получение их; получение исходя из реакционной смеси, содержащей кристаллический цеолит другого типа, или из предварительно полученных реагентов; их последующая обработка
C07C2/12 с кристаллическими алюмосиликатами, например молекулярными ситами
C07C5/22 изомеризацией
C10G47/18 катализаторами, содержащими металлы группы платины или их соединения
Автор(ы):, , ,
Патентообладатель(и):НЕСТЕ ОЙЛ ОЙЙ (FI)
Приоритеты:
подача заявки:
2005-12-23
публикация патента:

Настоящее изобретение относится к каталитическому материалу, представляющему собой мезопористое молекулярное сито с заделкой цеолитом. Мезопористое молекулярное сито выбранно из группы M41S. Цеолит представляет собой среднепористый цеолит, выбранный из цеолитов MFI, MTT, TON, AEF, MWW и FER, или крупнопористый цеолит, выбранный из цеолитов BEA, FAU, MOR. При этом каталитический материал является термостойким при температуре не ниже 900°С. Также изобретение относится к катализатору, способу получения мезопористого молекулярного сита с заделкой цеолитом и применению каталического материала и катализатора. Изобретение позволяет получить термостойкий каталитический материал, обладающий высокой каталитической активностью. 5 н. и 11 з.п. ф-лы, 7 табл., 9 ил.

каталитические материалы и способ их получения, патент № 2397018 каталитические материалы и способ их получения, патент № 2397018 каталитические материалы и способ их получения, патент № 2397018 каталитические материалы и способ их получения, патент № 2397018 каталитические материалы и способ их получения, патент № 2397018 каталитические материалы и способ их получения, патент № 2397018 каталитические материалы и способ их получения, патент № 2397018 каталитические материалы и способ их получения, патент № 2397018 каталитические материалы и способ их получения, патент № 2397018

Формула изобретения

1. Каталитический материал, отличающийся тем, что каталитический материал представляет собой мезопористое молекулярное сито с заделкой цеолитом, где мезопористое молекулярное сито выбрано из группы M41S, и цеолит представляет собой среднепористый цеолит, выбранный из цеолитов MFI, MTT, TON, AEF, MWW и PER, или крупнопористый цеолит, выбранный из цеолитов BEA, FAU, MOR, и каталитический материал является термостойким при температуре не ниже 900°С.

2. Каталитический материал по п.1, отличающийся тем, что каталитический материал имеет удельную площадь поверхности в интервале 1400-500 м2/г, предпочтительно 1200-600 м2/г.

3. Каталитический материал по п.1, отличающийся тем, что каталитический материал содержит мезопористое молекулярное сито, выбранное из МСМ-41 или МСМ-48.

4. Каталитический материал по п.1, отличающийся тем, что каталитический материал содержит цеолит, выбранный из MFI, MTT, AEF, BEA, MWW или MOR.

5. Каталитический материал по п.4, отличающийся тем, что мезопористым молекулярным ситом является МСМ-41 или МСМ-48, и цеолитом является цеолит MFI или BEA, или MWW, или MOR.

6. Каталитический материал по п.1, отличающийся тем, что каталитический материал находится в протонной форме, катионной форме или модифицирован металлом.

7. Катализатор, отличающийся тем, что катализатор содержит 90-10 мас.% каталитического материала по любому из пп.1-6 и 10-90 мас.% носителя.

8. Способ получения мезопористого молекулярного сита с заделкой цеолитом по п.1, отличающийся тем, что способ содержит следующие стадии:

a) получение зародышей цеолита из источника кремния и источника алюминия и структуроуправляющего агента или силикатного или алюмосиликатного предшественника зародышей цеолита и, необязательно, удаление структуроуправляющего агента операцией стадии прокаливания;

b) получение гелевой смеси мезопористого молекулярного сита из источника кремния, необязательного источника алюминия и поверхностно-активного вещества;

c) введение зародышей цеолита или силикатного или алюмосиликатного предшественника, полученного на стадии а), в гелевую смесь мезопористого молекулярного сита, полученную на стадии b), и гомогенизация и диспергирование в геле молекулярного сита зародышей цеолита или силикатного или алюмосиликатного предшественника;

d) осуществление созревания геля смеси стадии с) при перемешивании;

e) проведение гидротермического синтеза смеси стадии d) при поддержании смеси в достаточных условиях, включающих температуру от примерно 100°С до примерно 200°С в статическом или динамическом варианте перемешивания, до тех пор, пока не образуются кристаллы;

f) извлечение кристаллов;

g) промывка твердого продукта;

h) сушка твердого продукта; и

i) удаление поверхностно-активного вещества (S) частично или полностью операцией стадии прокаливания и, необязательно, структуроуправляющего агента, если он не был удален на стадии а), в результате чего получается мезопористое молекулярное сито с заделкой цеолитным катализатором.

9. Способ получения мезопористого молекулярного сита с заделкой цеолитом по п.8, отличающийся тем, что источник кремния на стадии а) выбран из оксидов кремния, предпочтительно из коллоидального диоксида кремния, твердого диоксида кремния и дымящего диоксида кремния.

10. Способ получения мезопористого молекулярного сита с заделкой цеолитом по п.8 или 9, отличающийся тем, что источник или источники кремния на стадии b) выбраны из соединений кремния, имеющих органическую группу, и из неорганических источников кремния, и предпочтительно источником кремния, имеющим органическую группу, является тетраэтоксисилан, тетраметиламмонийсиликат или тетраэтиламмонийсиликат, и неорганическим источником кремния является силикат натрия, жидкое стекло, коллоидальный диоксид кремния, твердый диоксид кремния или дымящий диоксид кремния.

11. Способ получения мезопористого молекулярного сита с заделкой цеолитом по п.8, отличающийся тем, что источник алюминия выбран из сульфата алюминия (Al2(SO4)3 ·18H2O), гидратированных гидроксидов алюминия, алюминатов, изопропилата алюминия и оксида алюминия.

12. Способ получения мезопористого молекулярного сита с заделкой цеолитом по п.8, отличающийся тем, что поверхностно-активное вещество выбрано из алкилтриметиламмонийгалогенидных соединений с общей формулой

CnH2n+1(СН 3)3·NX, где n=12-18, Х представляет собой Cl, Br, и предпочтительно поверхностно-активное вещество представляет собой н-гексадецилтриметиламмонийбромид, н-гексадецилтриметиламмонийхлорид, цетилтриметиламмонийбромид и цетилтриэтиламмонийбромид.

13. Способ получения мезопористого молекулярного сита с заделкой цеолитом по п.8, отличающийся тем, что дополнительный источник алюминия, выбранный из алкоголятов алюминия, предпочтительно изопропилата алюминия, добавляют на стадии с).

14. Применение каталитического материала по любому из пп.1-6 или катализатора по п.7 для переработки углеводородов, предпочтительно в димеризации олефинов, олигомеризации олефинов, изомеризации олефинов, крекинге углеводородов, алкилировании ароматических соединений, ароматизации легких углеводородов, этерификации, дегидратации и реакциях раскрытия кольца.

15. Применение каталитического материала по п.6 в изомеризации легких парафинов, изомеризации длинноцепочечных парафинов, гидрогенировании, гидрокрекинге, гидродесульфуризации, гидродеоксигенировании, гидроденитрогенировании, дегидрогенировании, реформинге, реакциях Фишера-Тропша и окисления.

16. Применение по п.14 в олигомеризации 1-децена, димеризации изобутена, изомеризации н-бутана, изомеризации 1-бутена и раскрытии кольца декалина.

Описание изобретения к патенту

Область техники, к которой относится изобретение

Настоящее изобретение относится к мезопористым катализаторам и, в частности, к новым мезопористым молекулярным ситам с заделкой цеолитом, имеющим высокую термостойкость, и к способу получения каталитических материалов. Указанные каталитические материалы являются подходящими для применения в области переработки углеводородов.

Описание прототипа

Мезопористые молекулярные сита в качестве каталитических материалов обратили на себя внимание ученых благодаря их уникальным свойствам, таким как крупные однородные поры, имеющие очень высокую площадь поверхности, размер которых может варьироваться от 2 до 50 нм. Однако мезопористые молекулярные сита, известные в технике, часто являются не очень термостойкими и гидротермостойкими, стенки пор являются аморфными, и они имеют слабокислотные свойства. Кроме того, в процессе регенерации отработанного катализатора после переработки углеводородов структура мезопористого молекулярного сита может разрушаться.

Кристаллические материалы, имеющие размер пор в микропористой области (d<2 нм), используются в качестве катализаторов и в качестве носителей катализаторов на промышленном уровне. Цеолиты являются хорошо известными примерами таких материалов. Цеолиты широко используются благодаря их особым свойствам, таким как большая площадь поверхности, высокая адсорбционная способность и возможность регулировать адсорбционную способность. Можно создавать активные центры в цеолитной структуре, строить активные центры и регулировать силу и количество кислотных центров. Размер пор цеолитов обычно находится в интервале 0,4-1,2 нм, и как термическая, так и химическая стойкость цеолитов является высокой. Однако способность цеолитов перерабатывать молекулы, имеющие больший молекулярный размер, чем размер пор цеолитов, является ограниченной, и, кроме того, цеолиты относительно быстро дезактивируются в некоторых реакциях.

US 5198203 рассматривает семейство упорядоченных мезопористых молекулярных сит, обозначенное как M41S и разработанное в начале 90-х годов. M41S представляет собой группу мезопористых молекулярноситовых материалов, образованных в водном растворе предшественниками оксида кремния и оксида алюминия с CiH2i (CH3)N+-катионами (i>7) в гидротермических условиях. Наиболее хорошо известными представителями указанной группы являются гексагональный МСМ-41, кубический МСМ-48 и пластинчатая структура МСМ-50. Размер пор мезопористого молекулярного сита может регулироваться в интервале от 2 до 10 нм, и композиция может содержать чистый оксид кремния и оксид металлокремния (например, Al-, V- и Ti-замещенный оксид кремния). Мезопористые молекулярноситовые материалы M41S-группы являются аморфными по природе, и их пористая система является упорядоченной.

Синтетическая композиция материала, содержащая ультракрупнопористую кристаллическую фазу, рассматривается в US 5246689 и US 5334368. Указанный материал является неорганическим, пористым и неслоистым, имеющим размеры пор в интервале от 1,3 до 20 нм. Распределение пор по размеру в единственной фазе является до некоторой степени регулярным. По меньшей мере один пик на рентгенограмме находится при d-расстоянии более 1,8 нм.

ЕР 0748652 рассматривает группу мезопористых материалов (MSA), имеющих узкое распределение пор по размеру. Указанный материал является аморфным и полностью разупорядоченным. Площадь поверхности материала по методу БЭТ находится в интервале 672-837 м2 /г.

Синтетически полученные мезопористые материалы являются некислотными, или их кислотность является ограниченной. Количество кислотных центров в мезопористых материалах увеличивается при введении алюминия в структуру оксида кремния мезопористого материала. Сила кислотности мезопористых материалов, описанных выше, является, однако, меньше силы кислотности цеолитов.

Различные способы получения мезопористых материалов известны в технике. Были сделаны попытки увеличить термическую и гидротермическую стойкость и кислотность мезопористых молекулярных сит, например, введением каталитически активных частиц в мезопористые структуры. В принципе, способы синтеза содержат получение раствора источника кремния с органическим агентом или агентами, корректирование рН раствора до значения, когда имеет место осаждение, с последующим извлечением и прокаливанием осадка. Источник алюминия вводится в раствор на любой стадии перед началом синтеза при повышенной температуре. Предлагаются некоторые поверхностно-активные вещества и шаблоны (органические агенты), композиции, растворители и условия реакции.

US 5942208 описывает способ получения мезопористого материала, имеющего улучшенную гидротермическую стойкость по сравнению с МСМ-41. В способе используются различные соли, и pH раствора корректируется слабыми кислотами.

ЕР 0795517 предусматривает способ синтеза мезопористых материалов, в котором используется смесь источника кремния и органического шаблона, содержащего фтор.

US 5942208 описывает получение мезопористого молекулярного сита, имеющего термическую и гидротермическую стойкость, которые являются лучше, чем у традиционных мезопористых молекулярных сит. Материал можно кипятить в воде в течение 12 ч без существенных изменений в структуре.

Альтернативным подходом к получению стабильных и активных мезопористых материалов является введение цеолитов в стенки мезопор. US 09/764686 рассматривает синтез мезопористых материалов с использованием зародыша Y-цеолита, зародыша MFI-цеолита и зародыша бета-цеолита.

CN 1349929 описывает получение MSA-3 и MAS-8 с использованием растворов предшественника L-цеолита.

В работе Kloetstra et al., Micropor. Mesopor. Mater., 6 (1996), 287 рассматривается образование на месте фоязита и МСМ-41. Их методика основана на последовательном синтезе цеолитов и МСМ-41.

В работе Karlsson et al., Micropor. Mesopor. Mater., 27 (1999), 181 рассматривается использование смешанной шаблонной методики для одновременного синтеза фаз цеолит/МСМ-41.

Материалы могут быть смесями двух или более фаз, или свободно связанный цеолит и мезопористый материал в случае методики синтеза должен расти и осаждать МСМ-41 поверх цеолита, или зародыши цеолита могут быть введены в гель.

Два различных типа шаблона используются в синтезе мезопористых материалов. Воспроизводимость таких способов получения может быть затруднена. Кроме того, в отсутствие химического взаимодействия между цеолитом и мезопористым молекулярным ситом термическая и гидротермическая стойкость получаемых материалов вероятно должна быть низкой.

В соответствии с существующей техникой мезопористые молекулярные сита имеют широкий круг применений в катализе в качестве активных фаз или в качестве носителей. Некоторые реакции конверсии углеводородов являются кислотнокатализируемыми. На основании их функции кислотного катализирования цеолиты являются известными своей активностью в изомеризации по двойной связи и структурной изомеризации олефинов, изомеризации парафинов, крекинге, димеризации олефинов, олигомеризации олефинов, раскрытии кольца нафтенов, алкилировании, трансалкилировании ароматических веществ, ароматизации и т.д. Бифункциональный катализатор, имеющий металлическую или металлоксидную, или сульфидную фазы, является применимым в таких реакциях, как реформинг, изомеризация парафинов, гидрокрекинг, каталитическое депарафинирование, дегидросульфуризация, дегидрооксигенирование, дегидронитрогенирование и некоторые реакции гидрогенирования. Главными недостатками в использовании цеолитов являются их относительно высокая способность к дезактивации и ограниченная способность обрабатывать массивные молекулы.

На основании вышеуказанного можно видеть, что существует потребность в термически и гидротермически стойких каталитических материалах на основе мезопористых молекулярных сит и в способе получения таких термически и гидротермически стойких каталитических материалов. Также очевидно, что имеется потребность в катализаторе, имеющем активный центр цеолитного типа, но также имеющем высокую доступность к активным центрам реагентов, реагентов с малой длиной диффузионного пути и продуктов, ограничивающих вторичные реакции и коксование.

Цель изобретения

Целью настоящего изобретения является создание нового и активного каталитического материала, имеющего мезопористое молекулярное сито с заделкой цеолитом, в частности, для реакций конверсии углеводородов.

Другой целью настоящего изобретения является механически, термически и гидротермически стойкое мезопористое молекулярное сито с заделкой цеолитом, имеющее кислотность цеолитного типа.

Еще одной целью настоящего изобретения является способ получения указанного каталитического материала, имеющего мезопористое молекулярное сито с заделкой цеолитной структурой.

Еще одной целью настоящего изобретения является применение указанного каталитического материала, имеющего мезопористое молекулярное сито с заделкой цеолитной структурой, в реакциях конверсии углеводородов.

Отличительные признаки мезопористого молекулярного сита с заделкой цеолитом, способа его получения и применения мезопористого молекулярного сита с заделкой цеолитом определены в формуле изобретения.

Краткое описание изобретения

Без желания иметь ограничение следующими пояснениями и теоретическими соображениями, рассматривающими синтез нового каталитического материала, имеющего мезопористое молекулярное сито с заделкой цеолитной структурой, который является особенно подходящим для реакций конверсии углеводородов, существенные признаки изобретения рассматриваются следующим образом.

Настоящее изобретение относится к новому и активному каталитическому материалу, имеющему мезопористое молекулярное сито с заделкой цеолитной структурой. Изобретение относится также к способу получения мезопористого молекулярного сита с заделкой цеолитом, в результате чего облегчается и воспроизводится синтез, и продукт показывает высокую каталитическую активность.

Каталитический материал, имеющий мезопористое молекулярное сито с заделкой цеолитной структурой, является подходящим для реакций конверсии углеводородов и, в частности, для переработки высокомолекулярных углеводородов. Указанный новый каталитический материал может использоваться в качестве компонента катализатора в крекинге, гидрокрекинге, раскрытии кольца, гидрировании ароматических соединений и, особенно, мультиароматических соединений, димеризации олефинов, олигомеризации, изомеризации олефинов и парафинов, алкилировании ароматических соединений, этерификации, гидродесульфуризации и реформинге, либо как таковой, либо с модификациями, известными в технике.

Подробное описание изобретения

Теперь установлено, что проблем, относящихся к цеолитным катализаторам и мезопористым катализаторам в соответствии с прототипом, можно избежать или по меньшей мере значительно уменьшить новым каталитическим материалом согласно настоящему изобретению, который представляет собой мезопористое молекулярное сито с заделкой цеолитом, имеющее механическую, термическую и гидротермическую стойкость. Новое мезопористое молекулярное сито с заделкой цеолитом является термостойким при температурах не ниже 900°C в присутствии воздуха.

Настоящее изобретение предусматривает группу новых мезопористых молекулярных сит с заделкой цеолитами, которые являются механически, термически и гидротермически стойкими. Материалы являются очень хорошо воспроизводимыми, как можно видеть в примерах, и они показывают лучшие свойства в некоторых реакциях конверсии углеводородов. Группа новых мезопористых молекулярных сит с заделкой цеолитами называется мезопористыми материалами (ММ). Мезопористый означает здесь материалы, имеющие поры 2-15 нм, и их пористая система является регулярной.

Мезопористое молекулярное сито с заделкой цеолитом содержит мезопористое молекулярное сито, выбранное из группы M41S, которая определена на странице 2 и содержит мезопористые материалы с упорядоченной пористой системой. Предпочтительно, мезопористое молекулярное сито выбрано из мезопористых алюмосиликатов, известных как группа МСМ-41.

Мезопористое молекулярное сито имеет заделку цеолитом, выбранным из среднепористых цеолитов, которые являются 10-звенными циклическими цеолитами, подобными структурам MFI, MTT, TON, каталитические материалы и способ их получения, патент № 2397018 EF, MWW и FER, и крупнопористых цеолитов, которые являются 12-звенными циклическими цеолитами, подобными структурам BEA, FAU и MOR. Примерами указанной группы цеолитов являются ZSM-5, ZSM-23, ZSM-22, SAPO-11, MCM-22, ферьерит, бета, Y- и Х-цеолиты и морденит. Предпочтительно, цеолитом является MFI, MTT, AEF, MWW, MOR и ВЕА цеолит.

Каталитический материал содержит 0,01-10 мас.% алюминия (Al).

Катализатор, который является особенно подходящим для промышленного и коммерческого применения, содержит мезопористое молекулярное сито с заделкой цеолитом согласно настоящему изобретению, а также носитель, выбранный из оксида алюминия, оксида кремния, глины и любого другого носителя согласно прототипу и их комбинаций. Предпочтительно, носитель содержит оксид алюминия или оксид кремния. Количество носителя варьируется в интервале от 10 до 90 мас.% по отношению к общей массе катализатора.

Новая группа каталитических материалов, имеющих мезопористое молекулярное сито с заделкой цеолитной структурой, согласно настоящему изобретению имеет высокую удельную площадь поверхности (по методу БЭТ) в интервале 1400-500 м2/г, предпочтительно 1200-600 м2/г.

Рентгенограмма порошка каталитического материала согласно настоящему изобретению показывает структуры мезопористого молекулярного сита и цеолита. Размер элементарной ячейки цеолита изменяется с количеством Al в каталитическом материале. Размер элементарной ячейки снижается с количеством Al от 1,982 нм в каталитическом материале, содержащем 0,2 мас.% Al, до 1,972 нм в каталитическом материале, содержащем 3,9 мас.% Al, когда типом цеолита является MFI (код материала ММ5). Изменение размера элементарной ячейки является обратным изменениям, наблюдаемым в цеолитах вообще.

Размеры элементарной ячейки составляют 1,428 нм и 1,430 нм, когда типом цеолита является ВЕА (код материала ММВЕ), размеры элементарной ячейки составляют 1,406 нм и 1,436 нм, когда типом цеолита является MWW (код материала MMMW22), и размеры элементарной ячейки составляют 1,800 нм и 1,806 нм, когда типом цеолита является MOR (код материала МММО).

Расстояние d100 в мезопористом молекулярном сите МСМ-41 снижается с увеличением содержания цеолита. Расстояние d100 варьируется от 4,4 до 3,8 нм в ММ5, и расстояние d100 варьируется от 4,1 до 4,0 нм в ММВЕ и МММО и от 4,0 до 4,2 нм в MMMW.

Размер элементарной ячейки и значения d100 в фазах чистого цеолита и МСМ-41 являются такими же, как в их механических смесях.

Изменения расстояние d100 и размеров элементарной ячейки являются очевидным подтверждением истинной химической связи между мезопористым молекулярным ситом и заделанным цеолитом в каталитическом материале согласно настоящему изобретению.

Отличительные характеристики каталитического материала согласно настоящему изобретению, мезопористого молекулярного сита с заделкой цеолитом, определяют дифракцией рентгеновских лучей порошка, сканирующей электронной микроскопией, трансмиссионной электронной микроскопией, определением удельной площади поверхности с использованием азотной адсорбции (по методу БЭТ) и определением кислотности с использованием десорбции аммиака с программированием температуры ((TPD)(ДПТ)) и ИК-спектроскопии с Фурье-преобразованием ((ИКСФП)(FTIR)) пиридина.

Общее число кислотных центров может быть определено способностью каталитического материала связывать молекулы сильного основания, такого как аммиак или пиридин. Общую кислотность определяют десорбцией аммиака с программированием температуры (ДТП), а кислотность кислот Бренстеда и Льюиса ИК-спектроскопией пиридина (ИКСФП).

Кислотность каталитического материала может быть задана количеством Al, введенного в структуру, и модификацией содержания алюминия (Al) в цеолите, МСМ-41 и ММ фазах. На фиг.1a и 1b представлено коррелирование между кислотностью и содержанием алюминия в каталитических материалах согласно настоящему изобретению. Фиг.1а показывает линейность общей кислотности как функции Al-содержания в различных ММ каталитических материалах, а фиг.1b показывает, как цеолитные и МСМ-41 каталитические материалы отклоняются по общей кислотности от ММ каталитических материалов. Цеолиты показывают большее количество кислотных центров как функцию Al-содержания, чем образцы ММ5, ММВЕ и MMMW, МСМ-41 является менее кислотным с аналогичным Al-содержанием.

Поскольку отсутствуют международные стандартные методы, применимые для определения кислотности, способы, используемые здесь, описаны ниже.

Определение кислотности осуществляют с помощью NH3 -ДПТ. Общая кислотность каталитических материалов определяется десорбцией с программированием температуры аммония (NH3 -ДПТ) с использованием прибора Altamira AMI-100. Размер образца составляет 40 мг. Общую кислотность определяют десорбцией NH 3 как функции температуры. Кислотность образцов рассчитывают по количеству NH3, адсорбированного при 200°C и десорбированного в интервале от 100 до 500°C. NH3 -ДПТ-прибор оборудован детектором теплопроводности ((ДТП)(TCD)), изготовленным компанией Gow Mac. Температуру повышают с линейной скоростью 20°C/мин до 500°C с выдержкой в течение 30 мин при этом значении. Проводят количественное определение с использованием пусков известного объема 10% NH3 в Не.

Кислотность определяется также с помощью ИКСФП пиридина. Кислотность образцов определяется инфракрасной спектроскопией (АТИ Маттсон ИКСФП) при использовании пиридина (каталитические материалы и способ их получения, патент № 2397018 99,5%, х.ч.) в качестве молекулы-зонда для качественного и количественного определения центров как кислот Бренстеда, так и кислот Льюиса. Образцы прессуют в тонкие самонесущие пластины (10-12 мг/см2). Пиридин сначала адсорбируют в течение 30 мин при 110°C и затем десорбируют при удалении при различных температурах (250, 300 и 450°C) с получением распределения концентрации кислотных центров. Все спектры регистрируют при 100°C со спектральным разрешением, равным 2 см-1 . Спектральные полосы при 1545 см-1 и 1450 см -1 соответственно используют для идентификации центров кислот Бренстеда ((ЦКБ)(BAS)) и центров кислот Льюиса ((ЦКЛ)(LAS)). Количества ЦКБ и ЦКЛ рассчитывают по интенсивностям соответствующих спектральных полос при использовании мольных коэффициентов затухания.

Кислотные центры расположены на поверхности каталитического материала. Общие площадь поверхности и объем пор определяются с использованием адсорбции и десорбции азота. Средние площадь поверхности мезопор и диаметр мезопор определяют по десорбции азота с использованием БДХ-уравнения (Баррера-Джойнера-Халенда). Диаметр пор имеет размерограничивающее воздействие как на реагенты, так и на продукты. Размер микропор зависит от структуры цеолита. В соответствии с IUPAC поры с диаметром менее 2 нм определяются как микропоры, а поры с диаметром от 2 до 50 нм определяются как мезопоры.

Изотермы азотной адсорбции/десорбции ММВЕ показаны на фиг.2. Диаметр мезопор остается подобным (2,4-2,7 нм) в заделанном материале по сравнению с 2,6 нм в мезопористом молекулярном сите.

БДХ-десорбция, иллюстрирующая распределение по диаметру в ММВЕ, показана на прилагаемой фиг.3.

Площадь поверхности и общий объем пор снижаются, когда цеолит заделывается в мезопористое молекулярное сито, как можно видеть из таблицы 1 ниже, представляющей значения площади поверхности, объема пор и диаметра пор для ММ5, ММВЕ и MMMW, и для сравнения включены данные для МСМ-41, MFI и ВЕА.

Таблица 1

Площадь поверхности и пористость
Образец Площадь поверхности по методу БЭТ (м2/г) Площадь поверхности мезопор по методу БДХ (м2/г) Общий объем пор (см 3/г)Диаметр пор по методу БДХ (нм)
Na-MCM-41-20949 947 0,8292,6
Na-MM5-2ZS 896 11450,814 2,5
Na-MM5-4ZS 820 10090,713 2,6
Na-MM5-4ZS-2A1 867 10690,794 2,5
Na-MM5-4ZS-2A125 733 5990,656 2,4
MFI ZSM-5360 1000,351 20*
Na-MMBE-4B 879 8840,692 2,7
Na-MMBE-4B-2A1 844 8590,742 2,7
Na-MMBE-4B-2A135 793 6840,835 2,6
BEA 585 850,254 никакой
H-MM-MW22854 838 0,7552,5
H-MM-MW22-2A1 808 7720,703 2,5
H-MM-MW22-2A1-35 728 6390,834 2,5
* - размер пустот между пор

Цеолит идентифицируется дифракцией рентгеновских лучей ((ДРЛ)(XRD)). По рентгенограммам могут быть определены размеры элементарной ячейки цеолита, а также МСМ-41-фазы, когда используются подходящие внутренние стандарты. В качестве внутреннего стандарта используются каталитические материалы и способ их получения, патент № 2397018 -Al2O3 или TiO2 (рутил).

Размер элементарной ячейки MFI определяют методом ASTM D 3942-97 с использованием каталитические материалы и способ их получения, патент № 2397018 -Al2O3 в качестве внутреннего стандарта.

Размер элементарной ячейки ВЕА определяют модифицированным методом ASTM D 3942-97 с использованием TiO2 в качестве внутреннего стандарта и [302] отражения при 22°2 каталитические материалы и способ их получения, патент № 2397018 .

Размер элементарной ячейки MWW определяют модифицированным методом ASTM D 3942-97 с использованием каталитические материалы и способ их получения, патент № 2397018 -Al2O3 в качестве внутреннего стандарта и [100] отражения при 7,2° 2 каталитические материалы и способ их получения, патент № 2397018 .

Размер элементарной ячейки МММО определяют по положениям пика без внутреннего стандарта. Значение составляет а0=2каталитические материалы и способ их получения, патент № 2397018 d[100]/каталитические материалы и способ их получения, патент № 2397018 3.

Размер элементарной ячейки мезопористого молекулярного сита (МСМ-41) определяют методом, описанным в работе J.S.Becker et al., J.Am.Chem.Soc., 114 (1992) 10834.

Размер элементарной ячейки цеолитов соответствует количеству Al, введенного в цеолитную структуру. Атом Al является больше атома Si, таким образом, размер элементарной ячейки обычно увеличивается с увеличением количества Al в большей части цеолитов. Напротив, в заделанном цеолите размеры элементарной ячейки снижаются с увеличением количества Al в каталитическом материале ММ5, как можно видеть из таблицы 2 (значения а0 MFI, BEA, MWW и MOR). Изменение размера элементарной ячейки ((РЭЯ)(UCD)) МСМ-41 не коррелирует с количеством Al, он несколько снижается с увеличением интенсивности MFI фазы. Изменения размеров элементарной ячейки являются явными доказательствами действительной химической связи между мезопористым молекулярным ситом и заделанным цеолитом.

Содержание Al и размеры элементарной ячейки МСМ-41, а также цеолитов MFI, BEA, MWW и MOR, заделанных в мезопористое молекулярное сито (МСМ-41), представлены в следующей таблице 2.

Таблица 2

Содержание алюминия и размеры элементарной ячейки
ОбразецAl (%) MCM-41 a0 (нм)MFI, BEA MWW и MOR a0 (нм)
MCM-412,5 3,5-
Na-MM5-2ZS 0,24,4 1,982
Na-MM5-4ZS0,4 4,2 1,981
Na-MM5-4ZS-2A11,5 4,3 1,979
Na-MM5-4ZS-2A135 3,93,8 1,972
MFI ZSM-51,4 - 1,978
Na-MM-BE-4B1,0 4,0 1,428
Na-MM-BE-4B-2A1 2,44,1 1,428
Na-MM-BE-4ZS-2A135 6,04,1 1,430
Na-MM-MW22-2Al2,2 4,2 1,426
H-MM-MW220,8 4,1 1,406
H-MM-MW22-2A12,2 4,1 1,436
H-MM-MW22-2A1-35 3,74,0 1,427
MCM-222,4 -1,405
Na-MM-MO 1,04,1 1,800
Na-MM-MO-2Al4,6 4,1 1,800
H-MM-MO1,0 4,0 1,806
Pt/H-MM-MO1,1 4,1 1,806

Термостойкость каталитического материала согласно настоящему изобретению определяют при выдержке заделанного материала при температуре 1000°C в воздушной среде. Рентгенограмма прокаленного ММ5 представлена на фиг.4. После термообработки при 1000°C получается такая же рентгенограмма, как показано на фиг.5. Данное наблюдение дает подтверждение, что указанный каталитический материал согласно настоящему изобретению является термостойким при температуре не ниже 1000°C.

Наноструктуру каталитических материалов согласно настоящему изобретению исследуют с использованием высокоразрешающей трансмиссионной электронной микроскопии ((ВРТЭМ) (HRTEM)) (трансмиссионный электронный микроскоп Philips CM-200FEG с разрешающей способностью 0,24 нм). Состав определяют энергорассеивающей спектрометрией ((ЭРС)(EDS)) (энергорассеивающий спектрометр NORAN Voyager). На фиг.6а показан ВРТЭМ-снимок мезопористого материала, заделанного бета-цеолитом, согласно настоящему изобретению. Для сравнения на фиг.6b показан ВРТЭМ-снимок упорядоченного МСМ-41 материала.

Способ получения мезопористого молекулярного сита с заделкой цеолитом описан более подробно ниже.

Способ получения мезопористого молекулярного сита с заделкой цеолитом содержит следующие стадии:

а) получение зародыша цеолита из источника кремния и источника алюминия и структуроуправляющего агента (шаблона R) или силикатного или алюмосиликатного предшественника зародыша цеолита и необязательное удаление шаблона операцией стадии прокаливания;

b) получение гелевой смеси мезопористого молекулярного сита из источника кремния, необязательного источника алюминия и поверхностно-активного вещества (S);

с) введение зародышей цеолита или силикатного или алюмосиликатного предшественника, полученных на стадии а), в качестве реагентов в гелевую смесь мезопористого молекулярного сита, полученную на стадии b), и гомогенизация и диспергирование зародыша цеолита или силикатного или алюмосиликатного предшественника в геле молекулярного сита;

d) проведение созревания геля смеси стадии с) при перемешивании;

е) выполнение гидротермического синтеза смеси стадии с) при выдерживании смеси в достаточных условиях, включая температуру от примерно 100°C до примерно 200°C при статическом или динамическом варианте перемешивания, до тех пор, пока не образуются кристаллы;

f) извлечение кристаллов;

g) промывка твердого продукта;

h) сушка твердого продукта; и

i) удаление поверхностно-активного вещества (S) частично или полностью операцией стадии прокаливания и, необязательно, шаблона (R), если он не был удален на стадии а),

в результате чего получается мезопористое молекулярное сито с заделкой цеолитом.

На стадии а) зародыши цеолита получаются из источника кремния и источника алюминия и структуроуправлящего агента (шаблона R). Источник кремния выбран из оксидов кремния, предпочтительно, коллоидального диоксида кремния, твердого диоксида кремния и дымящего диоксида кремния. Источник алюминия выбран из сульфата алюминия (Al 2(SO4)3·18H2O), гидратированных гидроксидов алюминия, алюминатов, изопропилата алюминия и оксида алюминия.

Для того чтобы получить желаемую цеолитную структуру, выбирается подходящий шаблон. Примерами обычно используемых шаблонов являются алкиламмонийгидроксиды, алкиламмонийгалогениды, алкиламингидроксид и алкиламингалогениды, например тетрапропиламмонибромид, тетраметиламмонийгидроксид, тетраметиламмонийбромид, тетраэтиламмонийбромид, тетраэтиламмонийгидроксид, пиперидин, пирролидон, октиламин, этилендиамин, 1,6-диамино-гексан и гексаметиленимин.

Температура на стадии а) находится в интервале от 40 до 200°C, и получение может иметь место в статическом или в динамическом варианте. Наконец, на стадии а) шаблон необязательно удаляется операцией термообработки, известной как операция стадии прокаливания. Температура обработки удаления находится в интервале 350-900°C. Шаблон альтернативно может быть удален на стадии i), если он не был удален на стадии а), но, предпочтительно, шаблон удаляется на стадии а).

На стадии b) гель мезопористого молекулярного сита получается из источников кремния, необязательных источников алюминия и поверхностно-активного вещества (S). Источники кремния выбраны из соединений кремния, имеющих органическую группу, и из неорганических источников кремния. Указанными источниками кремния, имеющими органическую группу, являются тетраэтоксисилан ((ТЭОС)(TEOS)), силикат тетраметиламмония, силикат тетраэтиламмония и т.д. Неорганическими источниками кремния являются силикат натрия, жидкое стекло, коллоидальный диоксид кремния, твердый диоксид кремния и дымящийся диоксид кремния. Источник алюминия выбран из сульфата алюминия (Al2(SO4)3 ·18H2O), гидратированных гидроксидов алюминия, алюминатов, изопропилата алюминия и оксида алюминия. Поверхностно-активное вещество выбрано для того, чтобы получить желаемые мезопористые фазы. Подходящими поверхностно-активными веществами являются алкилтриметиламмонийгалогенидные соединения общей формулы C nH2n+1(CH3)3каталитические материалы и способ их получения, патент № 2397018 NX, где n=12-18, X представляет собой Cl, Br. Предпочтительно, поверхностно-активное вещество выбрано из группы, состоящей из n-гексадецилтриметиламмонийбромида, n-гексадецилтриметиламмонийхлорида, цетилтриметиламмонийбромида и цетилтриэтиламмонийбромида. Температура на стадии b) находится в интервале от 20 до 100°C, и получение имеет место при перемешивании.

На стадии с) зародыши цеолита или силикатный или алюмосиликатный предшественник, полученные на стадии а), вводятся в гель мезопористого молекулярного сита при перемешивании. Образованная смесь гомогенизируется, и диспергируются зародыши цеолита или силикатный или алюмосиликатный предшественник. Для корректирования кислотности продукта может быть введен дополнительный источник алюминия. Указанным дополнительным источником алюминия является источник алюминия, имеющий органический лиганд, выбранный из алкоголятов алюминия, предпочтительно, изопропилат алюминия. Скорость перемешивания на стадии с) находится в интервале от 50 до 1000 об/мин. Время обработки находится в интервале от 10 до 500 мин.

На стадии d) гель созревает при перемешивании. Скорость перемешивания составляет 200-1000 об/мин, и время созревания геля составляет 30-1800 мин.

На стадии е) гидротермический синтез осуществляется при температуре в интервале 100-200°C. Время гидротермического синтеза может варьироваться от 10 ч до 300 ч в зависимости от желаемого материала. Гидротермический синтез осуществляется в динамическом варианте в условиях перемешивания смеси до тех пор, пока не образуются кристаллы.

На стадии f) кристаллы со стадии е) извлекаются, например, фильтрацией или другим способом, известным в технике. При необходимости перед извлечением, таким как фильтрация, рН смеси корректируется до 6-8.

На стадии g) твердый продукт, полученный на стадии f), тщательно промывается с использованием, например, воды в качестве промывочной жидкости. Температура воды составляет от комнатной температуры до 60°C. Промывку заканчивают, когда все нежелательные твердые материалы удаляются из твердого продукта.

На стадии h) твердый продукт сушат для удаления растворителя способами, известными в технике.

На стадии i) поверхностно-активное вещество (S) частично или полностью удаляется операцией термообработки, известной как операция стадии прокаливания. Шаблон (R) может быть, необязательно, удален на стадии i) одновременно с удалением поверхностно-активного вещества. Температура обработки находится в интервале 350-900°C. Скорость нагревания находится в интервале от 0,2 до 10°C/мин. Атмосфера обработки является окислительной, а на конечной стадии материал обычно обрабатывается в воздушной среде. Получают мезопористое молекулярное сито с заделкой цеолитом.

В способе получения из мезопористого молекулярного сита получают гелевый раствор, затем в подходящих условиях синтеза вводят цеолитный зародышеобразователь, и источник алюминия замещается цеолитным зародышеобразователем. Подходяще источником алюминия является алкоголят алюминия и, предпочтительно, изопропилат алюминия.

Предпочтительно, поверхностно-активным веществом является n-гексадецилтриметиламмонийбромид, n-гексадецилтриметиламмонийхлорид, цетилтриметиламмонийбромид и цетилтриэтиламмонийбромид.

В качестве растворителя и в промывке материала, предпочтительно, используется дистиллированная вода или деионизированная вода.

Цеолитными зародышеобразователями являются алюмосиликатные предшественники, не содержащие структуроуправлящие агенты, и они могут быть частично или полностью кристаллическими. Из-за изменения размера кристалла они могут быть определены или не могут быть определены методом ДРЛ. Однако их морфология может наблюдаться сканирующей электронной микроскопией. Зародыши цеолита имеют метастабильную фазу, которая в присутствии поверхностно-активного вещества в процессе синтеза каталитического материала согласно настоящему изобретению осуществляет химическое связывание со стенками мезопористого молекулярного сита.

После интенсивного диспергирования алюмосиликатных зародышей в гелевом растворе мезопористого молекулярного сита в присутствии поверхностно-активного вещества и в процессе созревания геля образуется мезофазный комплекс зародыши-поверхностно-активное вещество, который упрочняет и улучшает химическое связывание и кристалличность стенок мезопористого материала.

Алюмосиликатный предшественник зародышей цеолита может быть получен для таких типов цеолитной структуры, как MFI, BEA, TON, MOR, MWW, AEF и FAU из известных в технике (ЕР 23089, USP 3308069, EP 102716, EP 23089). Здесь приводятся два примера получения алюмосиликатных предшественников зародышей цеолита структур MFI и ВЕА. Однако очевидно, что другие указанные цеолиты являются равно подходящими.

Зародыши цеолита, полученные из алюмосиликатного предшественника, подходяще используются в получении геля. В период созревания геля имеют место химические взаимодействия и связывание через процесс зародышеобразования. Созревание геля ускоряет процесс зародышеобразования, и на зародышах цеолита может также иметь место вторичное зародышеобразование с образованием в результате комплекса «зародыши цеолита-мезофаза поверхностно-активного вещества», что улучшает химическую природу связи между микро- и мезофазами. Микрофазы являются ответственными за образование цеолитной структуры, а мезофазы - за образование микропористой структуры.

Образование комплекса «зародыши цеолита-мезофаза поверхностно-активного вещества» является благоприятным, когда зародыши цеолита вводятся после введения поверхностно-активного вещества в щелочную среду или вымачивания зародышей цеолита в водном растворе поверхностно-активного вещества перед его введением с последующим периодом созревания геля.

Порядок введения реагентов, особенно, поверхностно-активного вещества и зародышей цеолита, предварительной обработки и процесса созревания геля является важным для создания химической природы соединения между микропористым и мезопористым молекулярноситовым материалом. Для того чтобы получить новое с высокой кислотностью мезопористое молекулярноое сито с заделкой цеолитными материалами, источник алюминия вводится после введения зародышей цеолита, но перед периодом созревания геля.

Интенсивное перемешивание зародышей цеолита в процессе получения геля является важным для увеличения гомогенности и диспергирования зародышей цеолита в гелевом растворе.

Полученные каталитические материалы могут быть, необязательно, преобразованы в соответствующие протонные формы путем аммониевого ионообмена и прокаливания. Подходящим исходным материалом для аммониевого ионообмена является аммониевая соль, например нитрат аммония или хлорид аммония. Каталитические материалы обрабатываются в водном растворе аммониевой соли при температурах в интервале 25-80°C в течение подходящего интервала времени, например, 1-6 ч. Аммониевые катионы замещают щелочь или щелочные катионы материалов в процессе обработки. Степень ионообмена может варьироваться при изменении времени обработки, концентрации аммониевого раствора и температуры. После ионообменной обработки полученный материал сушат и прокаливают для разложения аммониевых ионов на протон и аммиак.

Модификации каталитического материала согласно настоящему изобретению, нового мезопористого молекулярного сита с заделкой цеолитом, могут осуществляться способами, выбранными из группы, состоящей из осаждения, нанесения, капсулирования и селективного удаления. Как пропитка, так и ионообменная обработка являются способами нанесения. В пропитке нанесение выполняется из жидкой фазы и адсорбцией, ионообмен и селективная реакция могут иметь место на или с поверхности подложки. В процессе удаления жидкости на поверхностях образуются в большей степени кристаллиты, чем монослои. В ионообменной обработке используются разбавленные растворы, и желаемый катион металла переходит из раствора в материал, замещая катион или протон твердого материала. Методики и выбор способа модификации зависят от заданных реакций. Обычно способ ионообменной обработки является предпочтительным, когда требуется низкое содержание и высокое диспергирование металла.

Удаление поверхностно-активного вещества после завершения синтеза необходимо для получения мезопористых молекулярных сит с заделкой цеолитом, имеющих высокую площадь поверхности и кислотность. Температура прокаливания, степень и длительность нагревания могут влиять на площадь поверхности, распределение пор по размерам и положение алюминия в каркасе. Очень большая площадь поверхности, определяемая азотной адсорбцией, и изменяющаяся сильная кислотность, определяемая ДПТ аммиака, синтезированного мезопористого молекулярного сита с заделкой цеолитом подтверждают, что операция стадии прокаливания является очень подходящим способом удаления поверхностно-активного вещества.

Удаление шаблона из мезопористого молекулярного сита с заделкой цеолитом также осуществляется операцией стадии прокаливания.

Синтез мезопористого материала может проводиться с или без дополнительных источников алюминия. В синтезе каталитического материала требуется только один шаблон.

Каталитический материал может быть введен в или на носитель с использованием любых способов, известных в технике.

Способ синтеза дает в результате увеличенную кристалличность стенок пор при химическом связывании цеолитного материала в мезопористом материале и поэтому введение желаемых свойств цеолита и одновременно сохранение цельной мезопористой структуры. В данном способе требуется только один тип шаблона в гелевом растворе для синтеза продукта.

Небольшие кристаллы цеолита используются в качестве «зародышей» в синтезе мезопористого материала, и можно варьировать концентрацию «зародышей» и размер цеолитных кристаллов. Это дает увеличение концентрации зародышей цеолита и заделывание большого количества микропористой структуры в мезопористое молекулярное сито и увеличенную кристалличность мезопористой стенки. Это также влияет на термическую и гидротермическую стойкость и кислотные свойства материала. Изменение размера зародышей цеолита может влиять на характеристику селективности по форме материала.

Рентгенограммы порошка, результаты сканирующей электронной микроскопии и азотной адсорбции подтверждают высокую термическую и гидротермическую стойкость мезопористого молекулярного сита с заделкой цеолитом согласно настоящему изобретению, такого как структуры MFI, BEA, MWW и MOR.

Кроме того, полная или почти полная регенерация использованных катализаторов от различных реакций конверсии углеводородов, например изомеризации н-бутана и 1-бутена и олигомеризации 1-децена, и сохранение каталитической активности также указывают на стабильность каталитического материала.

Способ получения делает возможным создание собственных кислотных свойств мезопористого молекулярного сита. Собственные кислотные свойства мезопористых молекулярноситовых материалов могут быть созданы использованием источника алюминия и варьированием отношения Si|Al гелевого раствора и различных цеолитных зародышей. Результаты определения характеристик катализаторов H-MM5, H-MMBE и H-MMMW ДПТ аммиака и различными тестовыми реакциями, например изомеризации н-бутана, подтверждают успех в разработке указанных материалов, имеющих различную кислотность.

Стенки пор мезопористого материала являются аморфными у МСМ-41, но с введением цеолита они показывают увеличенную кристалличность. Цеолитная элементарная ячейка в продукте согласно настоящему изобретению отличается от цеолитной элементарной ячейки в механической смеси цеолита и мезопористого молекулярного сита, и элементарная ячейка мезопористого молекулярного сита является больше, чем в механической смеси.

Другим существенным признаком продукта является то, что большая часть цеолитной фазы является химически связанной с мезопористым молекулярным ситом. Продукт является термостойким при температуре не ниже 900°C в присутствии воздуха.

Мезопористое молекулярное сито с заделкой цеолитом согласно настоящему изобретению и способ получения такого материала значительно отличаются от рассмотренных в прототипе и имеют некоторые преимущества.

Как можно видеть из рентгенограмм и СЭМ-снимков и измерений площади поверхности, новое мезопористое молекулярное сито ММ5 с заделкой цеолитной структурой MFI является термостойким до температуры не ниже 1000°C, и ММВЕ - не ниже 900°C.

Преобразование катионных форм MM5, MMBE, MMMW и MMMO, таких как Na-формы, представленные в примерах, в соответствующие протонные формы MM5, MMBE, MMMW и MMMO ионообменной обработкой водным раствором нитрата аммония с последующей сушкой при 100°C и прокаливанием при 500°C не изменяет структуру, как показано рентгенограммами, что указывает на гидротермическую стойкость нового материала. Известно, что структура МСМ-41 разрушается при контактировании с водой при высоких температурах.

Как показано рентгенограммами, модификации MM5, MMBE, MMMW и MMMO металлом, такие как модификации благородным металлом и, в частности, модификации платиной образцов, полученных с использованием водных растворов гексахлорплатиновой кислоты при 80°C в течение 24 ч с последующей сушкой при 100°C и прокаливанием при 450°C, не влияют на структуры ММ5 и ММВЕ. Это указывает на то, что материал является стойким в кислотной среде.

Протонная форма мезопористого молекулярного сита с заделкой MFI структурой показывает очень высокую активность в реакциях изомеризации н-бутана и 1-бутена. Катализаторы Н-ММ5 показывают увеличение конверсии н-бутана с увеличением кислотности.

Протонные формы мезопористого молекулярного сита с заделкой структурами MFI и ВЕА показывают очень высокую активность в димеризации 1-олефинов. Катализаторы Н-ММ5 и Н-ММВЕ показывают увеличение конверсии 1-децена с увеличением кислотности. Протонная форма мезопористого молекулярного сита с заделкой MFI структурой показывает очень высокую активность в димеризации изобутена, и катализатор не дезактивируется.

Каталитические материалы Н-ММ5 и Н-ММВЕ полностью регенерируются в присутствии воздуха. Регенерированные материалы показывают почти такую же каталитическую активность в изомеризации н-бутана и 1-бутена, как свежий катализатор. Хорошо известно, что одной из главных проблем катализатора МСМ-41 является регенерация, т.е. мезопористая структура разрушается после регенерации. Сохранение каталитической активности нового мезопористого молекулярного сита с заделкой цеолитными материалами в обеих реакциях однозначно показывает, что структура после регенерации является стабильной.

Pt-ММ5 показывает очень высокую конверсию в изомеризации н-бутана, и каталитический материал после регенерации сохраняет свою каталитическую активность.

Pt-ММВЕ показывает высокую селективность к продуктам раскрытия кольца.

Таким образом, для мезопористых материалов ММ5 и ММВЕ не требуется модификация после синтеза для увеличения термической и гидротермической стойкости. Высокая термическая и гидротермическая стойкость обусловлена заделкой цеолитом, таким как структура MFI и ВЕА, стенок мезопористого молекулярного сита с использованием способа, как описано выше.

Указанная новая группа мезопористых материалов может быть применена в качестве катализаторов в димеризации олефинов, олигомеризации олефинов, крекинге углеводородов, алкилировании ароматических соединений, ароматизации легких углеводородов, этерификации, реакциях дегидратирования и раскрытия кольца без дополнительной модификации активного материала. Материал, модифицированный металлом, показывает высокую активность в изомеризации легких парафинов. Аналогично материалы, модифицированные металлами, могут также быть активными в изомеризации длинноцепочечных парафинов, гидрировании, гидрокрекинге, гидродесульфуризации, гидродеоксигенировании, гидроденитрогенировании, дегидрогенировании, реформинге, реакциях Фишера-Тропша и окисления при модификации известными в технике способами. Металл в катализаторе может быть в металлической, оксидной или сульфидной форме или в любой другой форме при модификации известными в технике способами.

Материалы согласно настоящему изобретению также могут использоваться в различных технологиях разделения, например в адсорбции, абсорбции или в селективном удалении.

Следующие иллюстративные примеры обеспечивают лучшее понимание настоящего изобретения и вариантов его осуществления, однако специалисту в данной области техники будет понятно, что объем данного изобретения никаким образом не ограничивается указанными примерами.

Примеры

Пример 1 (сравнительный)

Получение цеолита ZSM-5 в соответствии с US 3926784

Исходными материалами являются силикат алюминия, сульфат алюминия, триизопропиламинбромид ((TPABr) (ТПАБр)), хлорид натрия, серная кислота и вода.

Раствор А получают смешением 3,5 г алюмосиликата с 4,4 л воды. Раствор В получают смешением 107 г сульфата алюминия, 438 г ТПАБр, 1310 г NaCl, 292 г H2SO4 и 6 л воды. Растворы вводят в реактор при перемешивании со скоростью перемешивания 250 об/мин. Температура постепенно повышается до 100°C, и давление увеличивается до 8 бар. Реакцию проводят при перемешивании в течение 6 дней. Реактор охлаждают. Образованный твердый продукт (ZSM-5) фильтруют, промывают теплой водой и сушат при 110°C до утра. Продукт прокаливают для удаления шаблона, проводят ионообменную обработку нитратом аммония и прокаливают для получения протонной формы цеолита (Н-ZSM-5).

Примеры 2-4

Получение материалов типа MSA в соответствии с ЕР 0784652

Исходными материалами, используемыми в синтезе материалов типа MSA, являются изопропилат алюминия (Al-i-C3H7O)3, тетраэтилортосиликат (Si(C2H5O)4) и водный раствор гидроксида тетрапропиламмония (ТРА-ОН).

ТРА-ОН, (Al-i-C3H7O)3 и воду смешивают при 60°C в течение 40 мин. Полученный раствор нагревают до 85°C, и образуется прозрачный раствор. Затем с помощью капельной воронки добавляют жидкий Si(C2H5 O)4. Полученную смесь перемешивают в течение 3 ч. Реакционную смесь охлаждают при непрерывном перемешивании в течение 20 ч. После охлаждения образованный спирт и вода выпариваются, и твердый гель сушат при 100°C. Сухой твердый материал измельчают и прокаливают при 550°C в течение 8 ч.

В нижеследующей таблице 3 представлено получение и свойства полученных катализаторов типа MSA.

Таблица 3
Параметры синтеза Пример 2 MSA-1Пример 3 MSA-2Пример 4 MSA-3
Si/Al (моль/моль) 5012 5
ТРА-ОН/вода (моль/моль)0,18 0,18 0,18
Свойства продуктакаталитические материалы и способ их получения, патент № 2397018 каталитические материалы и способ их получения, патент № 2397018 каталитические материалы и способ их получения, патент № 2397018
Si/Al (моль/моль) 5411,5 4,8
Площадь поверхности по методу БЭТ (м2/г) 650440 310
Площадь поверхности микропор (м2/г) 380340 210
Средний размер пор (нм) 1,41,4 1,4
Площадь поверхности мезопор (м2/г) 270100 80

Пример 5 (сравнительный)

Получение мезопористого молекулярного сита Н-МСМ-41

Синтез Na-MCM-41 проводят при получении растворов А, В и С. Раствор А получают смешением дымящего диоксида кремния с дистиллированной водой при непрерывном перемешивании в течение 15 мин. Раствор В получают при добавлении силиката тетраметиламмония к силикату натрия с непрерывным перемешиванием, и смесь перемешивают в течение 20 мин. Раствор С получают при растворении тетрадецилтриметиламмонийбромида в дистиллированной воде с перемешиванием в течение 20 мин. Раствор В медленно (в течение 15 мин) добавляют к раствору А с перемешиванием, и после добавления раствора В смесь перемешивают в течение дополнительных 20 мин. Раствор С медленно (в течение 20 мин) добавляют к смеси А и В с перемешиванием, и после добавления раствора С смесь дополнительно перемешивают в течение 20 мин. Затем изопропилат алюминия добавляют к гелевому раствору (А+В+С) при перемешивании, и полученная смесь представляет собой гель, созревший в течение 2 ч с перемешиванием. Корректируют рН, и гель загружают в тефлоновую чашку, которую устанавливают в автоклав. Синтез проводят в течение 48 ч при 100°C. После завершения синтеза реактор охлаждают, и мезопористый материал фильтруют и промывают дистиллированной водой. Полученный Na-MCM-41 сушат при 110°C и прокаливают при 550°C в течение 10 ч. Натриевую форму Na-MCM-41 подвергают ионообменной обработке 1М водным раствором нитрата аммония в течение 2 ч при 80°C, и затем полученный NH4-MCM-41 промывают дистиллированной водой, сушат и прокаливают.

Примеры 6-8

Мезопористое молекулярное сито с заделкой цеолитной структурой MFI

Получение зародышей цеолита MFI

Для получение зародышей цеолита MFI получают три различных раствора А, В и С. Раствор А получают добавлением 10,5 г дымящего диоксида кремния к 81,2 мл дистиллированной воды. Раствор В получают растворением 2,2 г NaOH и 0,3 г Al(OH)3 в 9,4 мл дистиллированной воды. Раствор В добавляют к раствору А и полученную гелевую смесь перемешивают в течение 20 мин. Раствор С получают растворением 3,7 г тетрапропиламмонийбромида в 3,8 мл воды с перемешиванием в течение 20 мин. Раствор С добавляют к гелевой смеси (А+В) и перемешивают в течение 15 мин, и добавляют 55 мл воды. Полученную гелевую смесь дополнительно перемешивают в течение 20 мин. Синтез проводят в течение 18 ч при 150°C. После завершения синтеза продукт фильтруют, промывают дистиллированной водой, сушат и прокаливают с получением зародышей цеолита MFI.

Пример 6а

Синтез мезопористого молекулярного сита с заделкой цеолитной структурой MFI Na-MM5-96h-4ZS без источника алюминия

Синтез Na-MM5-96h-4ZS проводят при получении растворов А, В и С. Раствор А получают смешением 8,3 г дымящего диоксида кремния с 51,7 г дистиллированной воды при непрерывном перемешивании (196 об/мин) в течение 20 мин. Раствор В получают при добавлении 18,1 г силиката тетраметиламмония к 11,7 г силиката натрия с непрерывным перемешиванием (180 об/мин), и смесь перемешивают в течение 20 мин. Раствор С получают растворением 26,3 г тетрадецилтриметиламмонийбромида в 174,3 мл дистиллированной воды с интенсивным перемешиванием (336 об/мин) в течение 20 мин. Раствор В медленно (в течение 15 мин) добавляют к раствору А с интенсивным перемешиванием (320 об/мин), и после добавления раствора В смесь перемешивают в течение дополнительных 20 мин. Раствор С медленно (в течение 20 мин) добавляют к смеси (А+В) с интенсивным перемешиванием (336 об/мин), и после добавления раствора С смесь дополнительно перемешивают в течение 20 мин.

Затем 4,2 г зародышей MFI, полученных, как указано выше, диспергируют в гелевом растворе (А+В+С) при интенсивном перемешивании (340 об/мин) в течение 20 мин. Гомогенизацию диспергированных зародышей MFI проводят при дополнительном интенсивном перемешивании (340 об/мин) геля в течение 35 мин. Затем обеспечивают созревание гелевого раствора в течение 3 ч при температуре окружающей среды с перемешиванием (180 об/мин). Корректируют рН геля, и гель загружают в тефлоновую чашку, которую затем устанавливают в автоклав. Синтез проводят в течение 96 ч при 100°C. После завершения синтеза реактор охлаждают в течение 30 мин, и полученный материал мезопористого молекулярного сита с заделкой структуры MFI смешивают с дистиллированной водой, фильтруют и тщательно промывают дистиллированной водой в течение 3 ч. Полученный Na-MM5-96h-4ZS сушат и прокаливают при 450°C с использованием операции стадии прокаливания в течение 10 ч в муфельной печи.

Пример 6b

Получение Н-MM5-96h-4ZS, протонной формы материала примера 6а

10 г Na-MM5-96h-4ZS (натриевая форма, полученная, как указано выше) подвергают ионообменной обработке 1М водным раствором нитрата аммония или хлорида аммония в течение 24 ч при температуре окружающей среды. После ионообменной обработки полученный NH4-MM5-96h-4ZS тщательно промывают дистиллированной водой, сушат и прокаливают с использованием операции стадии прокаливания в муфельной печи при 450°C.

Рентгенограмма полученного Н-MM5-96h-4ZS является аналогичной рентгенограмме Na-MM5-96h-4ZS, показывая, что водная обработка нового мезопористого материала и последующая термообработка не влияют на стабильность структуры.

Пример 7

Синтез мезопористого молекулярного сита с заделкой цеолитной структурой MFI - Na-MM5-96h-4ZS-2Al с использованием источника алюминия

Пример 7а

Синтез Na-MM5-96h-4ZS-2Al

Синтез Na-MM5-96h-4ZS-2Al проводят при получении растворов А, В и С. Раствор А получают смешением 8,3 г дымящего диоксида кремния с 51,7 г дистиллированной воды при непрерывном перемешивании (196 об/мин) в течение 20 мин. Раствор В получают при добавлении 18,1 г силиката тетраметиламмония к 11,7 г силиката натрия с непрерывным перемешиванием (180 об/мин), и полученную смесь перемешивают в течение 20 мин. Раствор С получают растворением 26,3 г тетрадецилтриметиламмонийбромида в 174,3 мл дистиллированной воды с интенсивным перемешиванием (336 об/мин) в течение 20 мин. Раствор В медленно (в течение 15 мин) добавляют к раствору А с интенсивным перемешиванием (320 об/мин), и после добавления раствора В смесь перемешивают в течение дополнительных 20 мин. Раствор С медленно (в течение 20 мин) добавляют к смеси (А+В) с интенсивным перемешиванием (336 об/мин), и после добавления раствора С смесь дополнительно перемешивают в течение 20 мин.

Затем 4,2 г зародышей MFI диспергируют в гелевых растворах (А+В+С) при интенсивном перемешивании (340 об/мин) в течение 20 мин. Гомогенизацию диспергированных зародышей MFI проводят при дополнительном интенсивном перемешивании (340 об/мин) геля в течение 35 мин. Затем добавляют 2,3 г изопропилата алюминия и перемешивают в течение 20 мин. Обеспечивают созревание полученного геля в течение 3 ч с перемешиванием (180 об/мин). Корректируют рН геля, и гель загружают в тефлоновую чашку, которую затем устанавливают в автоклав. Синтез проводят в течение 96 ч при 100°C. После завершения синтеза реактор охлаждают, и полученный мезопористый материал фильтруют и тщательно промывают дистиллированной водой. Полученный Na-MM5-96h-4ZS-2Al сушат и прокаливают с использованием операции стадии прокаливания в муфельной печи.

Пример 7b

Синтез Н-MM5-96h-4ZS-2Al

10 г Na-MM5-96h-4ZS-2Al (полученного, как указано выше) подвергают ионообменной обработке 1М водным раствором нитрата аммония в течение 24 ч при комнатной температуре. После ионообменной обработки мезопористый материал тщательно промывают, сушат и прокаливают в течение 4 ч с использованием операции стадии прокаливания в муфельной печи при 450°C.

Рентгенограмма полученного Н-MM5-96h-4ZS-2Al является аналогичной рентгенограмме Na-MM5-96h-4ZS-2Al, показывая, что водная обработка нового мезопористого материала и последующая термообработка не влияют на стабильность структуры.

Пример 8

Синтез мезопористого молекулярного сита с заделкой цеолитной структурой MFI - Na-MM5-96h-4ZS-2Al-35 с использованием источника алюминия

Пример 8а

Синтез Na-MM5-96h-4ZS-2Al-35

Синтез Na-MM5-96h-4ZS-2Al-35 проводят при получении растворов А, В и С. Раствор А получают смешением 4,5 г дымящего диоксида кремния с 51,7 г дистиллированной воды при непрерывном перемешивании (196 об/мин) в течение 20 мин. Раствор В получают при добавлении 18,1 г силиката тетраметиламмония к 11,7 г силиката натрия с непрерывным перемешиванием (180 об/мин) и полученную смесь перемешивают в течение 20 мин. Раствор С получают растворением 26,3 г тетрадецилтриметиламмонийбромида в 174,3 мл дистиллированной воды с интенсивным перемешиванием (336 об/мин) в течение 20 мин. Раствор В медленно (в течение 15 мин) добавляют к раствору А с интенсивным перемешиванием (320 об/мин) и после добавления раствора В полученную смесь перемешивают в течение дополнительных 20 мин. Раствор С медленно (в течение 20 мин) добавляют к смеси (А+В) с интенсивным перемешиванием (336 об/мин) и после добавления раствора С смесь дополнительно перемешивают в течение 20 мин.

Затем 4,2 г зародышей MFI, полученных в примере 6, диспергируют в гелевой смеси (А+В+С) при интенсивном перемешивании (340 об/мин) в течение 20 мин. Гомогенизацию диспергированных зародышей MFI проводят при дополнительном интенсивном перемешивании (340 об/мин) геля в течение 35 мин. Затем 2,3 г изопропилата алюминия добавляют к смеси и перемешивают в течение 20 мин. Затем обеспечивают созревание полученного геля в течение 3 ч с перемешиванием (180 об/мин). Корректируют рН геля и гель загружают в тефлоновую чашку, которую затем устанавливают в автоклав. Синтез проводят в течение 96 ч при 100°C. После завершения синтеза реактор охлаждают и полученный мезопористый материал фильтруют и тщательно промывают дистиллированной водой. Полученный Na-MM5-96h-4ZS-2Al-35 сушат и прокаливают с использованием операции стадии прокаливания в муфельной печи при 450°C.

Пример 8b

Получение Н-MM5-96h-4ZS-2Al-35

10 г Na-MM5-96h-4ZS-2Al-35 (полученного, как указано выше) подвергают ионообменной обработке 1М водным раствором нитрата аммония в течение 24 ч при комнатной температуре. После ионообменной обработки мезопористый материал тщательно промывают, сушат и прокаливают в течение 4 ч с использованием операции стадии прокаливания в муфельной печи при 450°C.

Рентгенограмма Н-MM5-96h-4ZS-2Al-35 является аналогичной рентгенограмме Na-MM5-96h-4ZS-2Al-35, показывая, что водная обработка нового мезопористого материала и последующая термообработка не влияют на стабильность структуры.

Пример 9

Материал ММ5, модифицированный платиной - Pt-Н-MM5-96h-4ZS-2Al

В 5 г Н-MM5-96h-4ZS-2Al вводят 2 мас.% Pt с использованием способа пропитки. Указанную пропитку проводят в роторном испарителе при 80°C в течение 24 ч с использованием водного раствора гексахлорплатиновой кислоты. MM5-96h-2Al с пропиткой 2 мас.% Pt сушат при 100°C и прокаливают при 450°C.

Рентгенограмма Pt-Н-MM5-96h-4ZS-2Al, представленная на фиг.5, является аналогичной рентгенограмме Na-MM5-96h-4ZS-2Al, указывая на гидротермическую стойкость нового мезопористого молекулярного сита с заделкой цеолитом.

Пример 10

Материал ММ5, модифицированный платиной - Pt-Н-MM5-96h-4ZS-2Al-35

В 5 г Н-MM5-96h-4ZS-2Al-35 вводят 2 мас.% Pt с использованием способа пропитки. Указанную пропитку проводят в роторном испарителе при 80°C в течение 24 ч с использованием водного раствора гексахлорплатиновой кислоты. MM5-96h-2Al-35 с пропиткой 2 мас.% Pt сушат при 100°C и прокаливают при 450°C.

Рентгенограмма Pt-Н-MM5-96h-4ZS-2Al-35 является аналогичной рентгенограмме Na-MM5-96h-4ZS-2Al-35, указывая на гидротермическую стойкость нового мезопористого молекулярного сита с заделкой цеолитом.

Примеры 11-13

Получение мезопористых материалов с заделкой цеолитной ВЕА-структурой

Получение зародышей ВЕА-цеолита

7,8 г NaAlO2 смешивают с 60 мл дистиллированной воды при перемешивании в течение 10 мин и к данному раствору добавляют 74 г гидроксида тетраэтиламмония (ТЕА-ОН, 40%) и перемешивают в течение 20 мин. К вышеуказанному раствору добавляют 145,4 г коллоидального диоксида кремния и перемешивают в течение 25 мин. Полученный гель загружают в тефлоновые чашки и устанавливают в автоклав. Синтез проводят при 150°C в течение 65 ч в статическом варианте. После завершения синтеза продукт фильтруют, промывают дистиллированной водой, сушат при 110°C и прокаливают при 550°C в течение 7 ч с получением цеолита ВЕА.

Пример 11а

Синтез мезопористого молекулярного сита с заделкой цеолитной структурой ВЕА - Na-MMBE-96h-4B без источника алюминия

Синтез Na-MMBE-96h-4ZS-4В проводят при получении растворов А, В и С. Раствор А получают смешением 8,3 г дымящего диоксида кремния с 51,7 г дистиллированной воды при непрерывном перемешивании (196 об/мин) в течение 20 мин. Раствор В получают при добавлении 18,1 г силиката тетраметиламмония к 11,7 г силиката натрия с непрерывным перемешиванием (180 об/мин), и полученную смесь перемешивают в течение 20 мин. Раствор С получают растворением 26,3 г тетрадецилтриметиламмонийбромида в 174,3 мл дистиллированной воды с интенсивным перемешиванием (336 об/мин) в течение 20 мин. Раствор В медленно (в течение 15 мин) добавляют к раствору А с интенсивным перемешиванием (320 об/мин) и после добавления раствора В полученную смесь перемешивают в течение дополнительных 20 мин. Раствор С медленно (в течение 20 мин) добавляют к смеси (А+В) с интенсивным перемешиванием (336 об/мин) и после добавления раствора С смесь дополнительно перемешивают в течение 20 мин.

Затем 3,7 г предшественника зародышей цеолита ВЕА, полученного, как указано выше, вводят в гелевую смесь (А+В+С) при интенсивном перемешивании (340 об/мин) и гель созревает в течение 3 ч с перемешиванием (180 об/мин). Корректируют рН геля и гель загружают в тефлоновую чашку, которую затем устанавливают в автоклав.

Синтез проводят в течение 96 ч при 100°C. После завершения синтеза реактор охлаждают, и полученный мезопористый материал фильтруют и тщательно промывают дистиллированной водой. Полученный Na-MMBE-96h-4В сушат и прокаливают с использованием операции стадии прокаливания.

Пример 11b

Получение Н-MMBE-96h-4ZS-4В

10 г Na-MMBE-96h-4В (полученного, как указано выше) подвергают ионообменной обработке 1М водным раствором нитрата аммония в течение 24 ч при комнатной температуре. После ионообменной обработки мезопористый материал тщательно промывают, сушат и прокаливают с использованием операции стадии прокаливания.

Рентгенограмма Н-MMBE-96h-4В является аналогичной рентгенограмме Na-MMBE-96h-4В, показывая, что водная обработка нового мезопористого материала и последующая термообработка не влияют на стабильность структуры.

Пример 12

Синтез мезопористого молекулярного сита с заделкой цеолитной структурой ВЕА - Na-MMBE-96h-4В-2Al с источником алюминия

Пример 12а

Синтез Na-MMBE-96h-4В-2Al

Синтез Na-MMBE-96h-4В-2Al проводят при получении растворов А, В и С. Раствор А получают смешением 8,3 г дымящего диоксида кремния с 51,7 г дистиллированной воды при непрерывном перемешивании (196 об/мин) в течение 20 мин. Раствор В получают при добавлении 18,1 г силиката тетраметиламмония к 11,7 г силиката натрия с непрерывным перемешиванием (180 об/мин), и полученную смесь перемешивают в течение 20 мин. Раствор С получают растворением 26,3 г тетрадецилтриметиламмонийбромида в 174,3 мл дистиллированной воды с интенсивным перемешиванием (336 об/мин) в течение 20 мин. Раствор В медленно (в течение 15 мин) добавляют к раствору А с интенсивным перемешиванием (320 об/мин), и после добавления раствора В смесь перемешивают в течение дополнительных 20 мин. Раствор С медленно (в течение 20 мин) добавляют к смеси (А+В) с интенсивным перемешиванием (336 об/мин), и после добавления раствора С смесь дополнительно перемешивают в течение 20 мин.

Затем 3,7 г предшественника зародышей цеолита ВЕА (полученного, как указано выше) вводят в гелевую смесь (А+В+С) при интенсивном перемешивании (350 об/мин) и перемешивают в течение 25 мин и затем добавляют 1,9 г изопропилата алюминия и перемешивают в течение 20 мин. Обеспечивают созревание полученного геля в течение 3 ч с перемешиванием (180 об/мин). Корректируют рН геля, и гель загружают в тефлоновую чашку, которую затем устанавливают в автоклав. Синтез проводят в течение 96 ч при 100°C. После завершения синтеза реактор охлаждают, и мезопористый материал фильтруют и тщательно промывают дистиллированной водой. Полученный Na-MMBE-96h-4В-2Al сушат и прокаливают с использованием операции стадии прокаливания в течение 10 ч.

Пример 12b

Получение Н-MMBE-96h-4В-2Al

10 г Na-MMBE-96h-4В-2Al (полученного, как указано выше) подвергают ионообменной обработке 1М водным раствором нитрата аммония в течение 24 ч при температуре окружающей среды. После ионообменной обработки материал мезопористого молекулярного сита тщательно промывают, сушат и прокаливают в муфельной печи с использованием операции стадии прокаливания.

Рентгенограмма Н-MMBE-96h-4В-2Al является аналогичной рентгенограмме Na-MMBE-96h-4В-2Al, показывая, что водная обработка нового мезопористого материала и последующая термообработка не влияют на стабильность структуры.

Пример 13

Синтез мезопористого молекулярного сита с заделкой цеолитной ВЕА-структурой - Na- MMBE-96h-4В-2Al-35 с источником алюминия

Пример 13а

Синтез Na-MM5-96h-4ZS-2Al-35

Синтез Na-MM5-96h-4ZS-2Al-35 проводят при получении растворов А, В и С. Раствор А получают смешением 4,4 г дымящего диоксида кремния с 51,7 г дистиллированной воды при непрерывном перемешивании (196 об/мин) в течение 20 мин. Раствор В получают при добавлении 18,1 г силиката тетраметиламмония к 11,7 г силиката натрия с непрерывным перемешиванием (180 об/мин), и полученную смесь перемешивают в течение 20 мин. Раствор С получают растворением 26,3 г тетрадецилтриметиламмонийбромида в 174,3 мл дистиллированной воды с интенсивным перемешиванием (336 об/мин) в течение 20 мин. Раствор В медленно (в течение 15 мин) добавляют к раствору А с интенсивным перемешиванием (320 об/мин), и после добавления раствора В смесь перемешивают в течение дополнительных 20 мин. Раствор С медленно (в течение 20 мин) добавляют к смеси (А+В) с интенсивным перемешиванием (336 об/мин), и после добавления раствора С смесь дополнительно перемешивают в течение 20 мин.

Затем 3,7 г предшественника зародышей цеолита ВЕА (полученного, как указано выше) вводят в гелевую смесь (А+В+С) при интенсивном перемешивании (350 об/мин) и перемешивают в течение 25 мин. Затем добавляют 1,9 г изопропилата алюминия и перемешивают в течение 20 мин. Затем обеспечивают созревание полученного геля в течение 3 ч с перемешиванием (180 об/мин). Корректируют рН геля, и гель загружают в тефлоновую чашку, которую затем устанавливают в автоклав. Синтез проводят в течение 96 ч при 100°C. После завершения синтеза реактор охлаждают, и мезопористый материал фильтруют и тщательно промывают дистиллированной водой. Полученный Na-MMBE-96h-4В-2Al-35 сушат и прокаливают с использованием операции стадии прокаливания.

Пример 13b

Получение Н-MMBE-96h-4В-2Al-35

10 г Na-MMBE-96h-4В-2Al-35 (полученного, как указано выше) подвергают ионообменной обработке 1М водным раствором нитрата аммония в течение 24 ч при температуре окружающей среды. После ионообменной обработки материал мезопористого молекулярного сита тщательно промывают дистиллированной водой, сушат и прокаливают с использованием операции стадии прокаливания.

Рентгенограмма Н-MMBE-96h-4В-2Al-35 является аналогичной рентгенограмме Na-MMBE-96h-4В-2Al-35, показывая, что водная обработка нового мезопористого материала и последующая термообработка не влияют на стабильность структуры.

Пример 14

Материал ММВЕ, модифицированный платиной - Pt-Н-MMBE-96h-4В-2Al

В 5 г Н-MMBE-96h-4В-2Al (полученного, как указано выше) вводят 2 мас.% Pt с использованием способа пропитки. Указанную пропитку проводят в роторном испарителе при 80°C в течение 24 ч с использованием водного раствора гексахлорплатиновой кислоты. Н-MMBE-96h-2Al с пропиткой 2 мас.% Pt сушат и прокаливают.

Рентгенограмма Pt-Н-MMBE-96h-4В-2Al является аналогичной рентгенограмме Na-MMBE-96h-4В-2Al, указывая на гидротермическую стойкость нового мезопористого молекулярного сита. Кроме того, модификация Н-MMBE-96h-2Al платиной не влияет на исходную структуру.

Пример 15

Получение материала ММВЕ, модифицированного платиной - Pt-Н-MMBE-96h-4В-2Al-35

В 5 г Н-MMBE-96h-4В-2Al-35 вводят 2 мас.% Pt с использованием способа пропитки. Указанную пропитку проводят в роторном испарителе при 80°C в течение 24 ч с использованием водного раствора гексахлорплатиновой кислоты. Н-MMBE-96h-2Al-35 с пропиткой 2 мас.% Pt сушат и прокаливают.

Рентгенограмма Pt-Н-MMBE-96h-4В-2Al-35 является аналогичной рентгенограмме Na-MMBE-96h-4В-2Al-35, указывая на гидротермическую стойкость нового мезопористого молекулярного сита. Кроме того, модификация Н-MMBE-96h-2Al-35 платиной не влияет на исходную структуру.

Примеры 16-18

Получение Pt-Н-MMBE ионообменной обработкой

2 г каждого из Н-ММВЕ-материалов: Н-MMBE-96h-4В (пример 16), Н-MMBE-96h-4В-2Al (пример 17) и Н-MMBE-96h-4В-2Al-35 (пример 18) взвешивают в 2 л колбах. Добавляют 1 л ионообменной воды. На верхнюю часть колбы устанавливают дефлегматор. Колбу помещают на водяную баню, температура 70°C и встряхивание 110. Колбу выдерживают в указанных условиях в течение 1 ч. Затем дефлегматор заменяют капельной воронкой с выпуском воздуха. 52 мл 0,01 М Pt-раствора дозируют в капельную воронку. Pt-раствор медленно (около 15 капель в минуту) капает в колбу, температура 70°C, встряхивание 110. Введение платины занимает 53 мин. Капельную воронку заменяют дефлегматором, и колбу оставляют в указанных условиях в течение 24 ч.

Реакционную смесь из колбы фильтруют с отсасыванием с использованием тигля из закаленного стекла. Полученный материал промывают в колбе 1 л ионообменной воды и фильтруют снова. Это выполняют дважды. После второй промывки тигель из закаленного стекла с материалом помещают в печь при температуре 80°C на 16 ч.

После 16 ч сушки материал перегружают в тигель и прокаливают в печи. Температуру повышают от 21 до 300°C со скоростью 0,2°C/мин.

Примеры 19-28

Мезопористое молекулярное сито с заделкой цеолитной структурой MWW

Получение зародышей цеолита MWW

Для получения зародышей цеолита MWW готовят два раствора А и В. Раствор А получают при добавлении 87,58 г силиката натрия к 42 мл дистиллированной воды при перемешивании в течение 15 мин, и к данному раствору добавляют по каплям 16,7 г гексаметилена в течение периода 25 мин, и раствор перемешивают в течение 20 мин. Раствор В получают при добавлении 7,35 г концентрированной серной кислоты к 224 мл дистиллированной воды и перемешивании в течение 10 мин, после чего добавляют 8,9 г сульфата алюминия и перемешивают в течение 20 мин. Раствор В медленно добавляют к раствору А с интенсивным перемешиванием. Гель загружают в тефлоновые чашки и устанавливают в 300 мл автоклавы. Синтез проводят при 150°C в течение 96 ч в ротационном варианте. После завершения синтеза продукт фильтруют, промывают дистиллированной водой, сушат при 110°C и прокаливают при 550°C в течение 8 ч с получением предшественника зародышей цеолита MWW.

Пример 19а

Синтез мезопористого молекулярного сита с заделкой цеолитной структурой MWW Na-MM-4MW22 без источника алюминия

Синтез Na-MM-4MW22 проводят при получении растворов А, В и С. Раствор А получают смешением 8,3 г дымящего диоксида кремния с 51,7 г дистиллированной воды при непрерывном перемешивании (196 об/мин) в течение 20 мин. Раствор В получают при добавлении 18,1 г силиката тетраметиламмония к 11,7 г силиката натрия с непрерывным перемешиванием (180 об/мин), и смесь перемешивают в течение 20 мин. Раствор С получают растворением 26,3 г тетрадецилтриметиламмонийбромида в 174,3 мл дистиллированной воды с интенсивным перемешиванием (336 об/мин) в течение 20 мин. Раствор В медленно (в течение 15 мин) добавляют к раствору А с интенсивным перемешиванием (320 об/мин), и после добавления всего раствора В смесь перемешивают в течение дополнительных 20 мин. Раствор С медленно (в течение 20 мин) добавляют к смеси (А+В) с интенсивным перемешиванием (336 об/мин), и после добавления раствора С смесь дополнительно перемешивают в течение 20 мин.

После этого 4,22 г предшественника зародышей цеолита MWW, полученного, как указано выше, вводят в гелевые растворы (А+В+С) при интенсивном перемешивании (340 об/мин). Гомогенизацию диспергированного MWW проводят при дополнительном перемешивании (340 об/мин) геля в течение 35 мин. После этого обеспечивают созревание геля в течение 3 ч с перемешиванием (180 об/мин) при температуре окружающей среды. Корректируют рН геля, и гель загружают в тефлоновые чашки, которые затем устанавливают в автоклав. Синтез проводят в течение 96 ч при 100°C.

После завершения синтеза реактор охлаждают в течение 30 мин, и материал мезопористого молекулярного сита с заделкой цеолитной структурой MWW смешивают с дистиллированной водой, фильтруют и тщательно промывают дистиллированной водой в течение 3 ч. Синтезированный таким образом Na-MM-4MW22 сушат при 110°C и прокаливают при 550°C с использованием операции стадии прокаливания в течение 10 ч в муфельной печи.

Пример 19b

Получение Н-MM-4MW22

10 г Na-MM-4MW22 (натриевая форма, полученная, как указано выше) подвергают ионообменной обработке 1М водным раствором нитрата аммония или хлорида аммония в течение 24 ч при температуре окружающей среды. После ионообменной обработки полученный материал мезопористого молекулярного сита NH4-MM-4MW22 тщательно промывают дистиллированной водой, сушат при 110°C в течение 12 ч и прокаливают при 450°C в течение 4 ч в муфельной печи с использованием операции стадии прокаливания.

Пример 20

Синтез мезопористого молекулярного сита с заделкой цеолитной структурой MWW - Na-MM-4MW22-2Al с использованием источника алюминия

Пример 20а

Синтез Na-MM-4MW22-2Al

Синтез Na-MM-4MW22-2Al проводят при получении растворов А, В и С. Раствор А получают смешением 8,3 г дымящего диоксида кремния с 51,7 г дистиллированной воды при непрерывном перемешивании (196 об/мин) в течение 20 мин. Раствор В получают при добавлении 18,1 г силиката тетраметиламмония к 11,7 г силиката натрия с непрерывным перемешиванием (180 об/мин), и полученную смесь перемешивают в течение 20 мин. Раствор С получают растворением 26,3 г тетрадецилтриметиламмонийбромида в 174,3 мл дистиллированной воды с интенсивным перемешиванием (336 об/мин) в течение 20 мин. Раствор В медленно (в течение 15 мин) добавляют к раствору А с интенсивным перемешиванием (320 об/мин), и после добавления раствора В смесь перемешивают в течение дополнительных 20 мин. Раствор С медленно (в течение 20 мин) добавляют к растворам (А+В) с интенсивным перемешиванием (336 об/мин), и после добавления всего раствора С смесь дополнительно перемешивают в течение 20 мин.

4,2 г зародышей цеолита MWW, полученного, как указано выше, добавляют к гелевым растворам (А+В+С) при интенсивном перемешивании (350 об/мин) в течение 20 мин. Гомогенизацию диспергированного MWW проводят при дополнительном интенсивном перемешивании (340 об/мин) геля в течение 35 мин. Затем добавляют 2,3 г изопропилата алюминия и перемешивают в течение 20 мин. После этого обеспечивают созревание полученного геля в течение 3 ч с перемешиванием (180 об/мин) при температуре окружающей среды. Корректируют рН геля, и гель загружают в тефлоновые чашки, которые затем устанавливают в 300 мл автоклавы. Синтез проводят в течение 96 ч при 100°C.

После завершения синтеза реактор охлаждают, и материал мезопористого молекулярного сита с заделкой цеолитной структурой MWW фильтруют и тщательно промывают дистиллированной водой в течение 3 ч. Синтезированный таким образом Na-MM-4MW22-2Al сушат при 110°C и прокаливают при 550°C с использованием операции стадии прокаливания в течение 10 ч.

Пример 20b

Получение Н-MM-4MW22-2Al

10 г Na-MM-4MW22-2Al (натриевая форма, полученная, как указано выше) подвергают ионообменной обработке 1М водным раствором нитрата аммония или хлорида аммония в течение 24 ч при температуре окружающей среды. После ионообменной обработки полученный материал мезопористого молекулярного сита NH4 -MM-4MW22-2Al тщательно промывают дистиллированной водой, сушат при 110°C в течение 12 ч и прокаливают при 450°C в течение 4 ч в муфельной печи с использованием операции стадии прокаливания.

Рентгенограмма Н-MM-4MW22-2Al является аналогичной рентгенограмме Na-MM-4MW22-2Al, показывая, что водная обработка нового мезопористого материала и последующая термообработка не влияют на стабильность структуры.

Пример 21

Синтез мезопористого молекулярного сита с заделкой цеолитной MWW-структурой - Na-MM-4MW22-2Al-35 с использованием источника алюминия

Пример 21а

Синтез Na-MM-4MW22-2Al-35

Синтез Na-MM-4MWW22-2Al-35 проводят при получении растворов А, В и С. Раствор А получают смешением 4,5 г дымящего диоксида кремния с 51,7 г дистиллированной воды при непрерывном перемешивании (196 об/мин) в течение 20 мин. Раствор В получают при добавлении 18,1 г силиката тетраметиламмония к 11,7 г силиката натрия с непрерывным перемешиванием (180 об/мин), и полученную смесь перемешивают в течение 20 мин. Раствор С получают растворением 26,3 г тетрадецилтриметиламмонийбромида в 174,3 мл дистиллированной воды с интенсивным перемешиванием (336 об/мин) в течение 20 мин. Раствор В медленно (в течение 15 мин) добавляют к раствору А с интенсивным перемешиванием (320 об/мин), и после добавления всего раствора В смесь перемешивают в течение дополнительных 20 мин. Раствор С медленно (в течение 20 мин) добавляют к растворам (А+В) с интенсивным перемешиванием (336 об/мин), и после добавления раствора С смесь дополнительно перемешивают в течение 20 мин.

4,2 г зародышей цеолита MWW, полученных в примере 19, вводят в гелевую смесь (А+В+С) при интенсивном перемешивании (340 об/мин) в течение 20 мин. Гомогенизацию диспергированного MWW проводят при дополнительном интенсивном перемешивании (340 об/мин) геля в течение 35 мин. Затем 2,3 г изопропилата алюминия добавляют к смеси и перемешивают в течение 20 мин. После этого обеспечивают созревание полученного геля в течение 3 ч с перемешиванием (180 об/мин) при температуре окружающей среды. Корректируют рН геля, и гель загружают в тефлоновые чашки, которые затем устанавливают в 300 мл автоклавы. Синтез проводят в течение 96 ч при 100°C.

После завершения синтеза реактор охлаждают, и полученный материал мезопористого молекулярного сита с заделкой цеолитной структурой MWW смешивают с дистиллированной водой, фильтруют и тщательно промывают дистиллированной водой в течение 3 ч. Синтезированный таким образом Na-MM-4MW22-2Al-35 сушат при 110°C и прокаливают при 550°C в муфельной печи с использованием операции стадии прокаливания в течение 10 ч.

Пример 21b

Получение Н-MM-4MW22-2Al-35

10 г Na-MM-4MW22-2Al-35 (натриевая форма, полученная, как указано выше) подвергают ионообменной обработке 1М водным раствором нитрата аммония в течение 24 ч при температуре окружающей среды. После ионообменной обработки полученный материал мезопористого молекулярного сита NH4 -MM-4MW22-2Al-35 тщательно промывают дистиллированной водой, сушат при 110°C в течение 12 ч и прокаливают при 450°C в течение 4 ч в муфельной печи с использованием операции стадии прокаливания.

Рентгенограмма полученного Н-MM-4MW22-2Al-35 является аналогичной рентгенограмме Na-MM-4MW22-2Al-35, показывая, что водная обработка нового мезопористого материала и последующая термообработка не влияют на стабильность структуры.

Пример 22

Получение материала Н-MM-4MW22-2Al, модифицированного платиной

В 5 г Н-MM-4MW22-2Al вводят 2 мас.% Pt с использованием способа пропитки. Указанную пропитку проводят в роторном испарителе при 80°C в течение 24 ч с использованием водного раствора гексахлорплатиновой кислоты. Н-MM-4MW22-2Al с пропиткой 2 мас.% Pt сушат при 100°C и прокаливают при 450°C.

Рентгенограмма полученного Pt-Н-MM-4MW22-2Al является аналогичной рентгенограмме Na-MM-4MW22-2Al, указывая на гидротермическую стойкость нового мезопористого молекулярного сита с заделкой цеолитной структурой MWW.

Пример 23

Получение материала Н-MM-4MW22-2Al-35, модифицированного платиной

В 5 г Н-MM-4MW22-2Al-35 вводят 2 мас.% Pt с использованием способа пропитки. Указанную пропитку проводят в роторном испарителе при 80°C в течение 24 ч с использованием водного раствора гексахлорплатиновой кислоты. Н-MM-4MW22-2Al-35 с пропиткой 2 мас.% Pt сушат при 100°C и прокаливают при 450°C.

Рентгенограмма Pt-Н-MM-4MW22-2Al-35 является аналогичной рентгенограмме Na-MM-4MW22-2Al-35, указывая на гидротермическую стойкость нового мезопористого молекулярного сита с заделкой цеолитной структурой MWW.

Примеры 24-28

Мезопористое молекулярное сито с заделкой цеолитной структурой MOR

Получение зародышей цеолита MOR

Для получения зародышей цеолита MOR готовят два раствора А и В. Раствор А получают при добавлении 37,8 г Ludox AS30 к 6,7 г пиперидина и перемешивании в течение 15 мин. Раствор В получают при добавлении 44 мл дистиллированной воды к 4,6 г гидроксида натрия и перемешивании в течение 10 мин, и затем добавляют 5,9 г сульфата алюминия и дополнительно перемешивают в течение 15 мин. Раствор В медленно добавляют к раствору А с интенсивным перемешиванием в течение 15 мин. Гель загружают в тефлоновые чашки и устанавливают в 300 мл автоклавы. Синтез проводят при 200°C в течение 48 ч в ротационном варианте. После завершения синтеза продукт фильтруют, промывают дистиллированной водой, сушат при 110°C и прокаливают при 550°C в течение 19 ч с получением предшественника зародышей цеолита MOR.

Пример 24а

Синтез мезопористого молекулярного сита с заделкой цеолитной структурой MOR - Na-MM-MO-4MO-96h без источника алюминия

Синтез Na-MM-MO-4MO-96h проводят при получении растворов А, В и С. Раствор А получают смешением 8,3 г дымящего диоксида кремния с 51,7 г дистиллированной воды при непрерывном перемешивании (196 об/мин) в течение 20 мин. Раствор В получают при добавлении 18,1 г силиката тетраметиламмония к 11,7 г силиката натрия с непрерывным перемешиванием (180 об/мин), и смесь перемешивают в течение 20 мин. Раствор С получают растворением 26,3 г тетрадецилтриметиламмонийбромида (Fluka) в 174,3 мл дистиллированной воды с интенсивным перемешиванием (336 об/мин) в течение 20 мин. Раствор В медленно (в течение 15 мин) добавляют к раствору А с интенсивным перемешиванием (320 об/мин), и после добавления всего раствора В смесь перемешивают в течение дополнительных 20 мин. Раствор С медленно (в течение 20 мин) добавляют к смеси (А+В) с интенсивным перемешиванием (336 об/мин), и после добавления всего раствора С смесь дополнительно перемешивают в течение 20 мин.

Затем 3,7 г предшественника зародышей цеолита MOR, полученного, как указано выше, вводят в гелевую смесь (А+В+С) при интенсивном перемешивании (340 об/мин) в течение 20 мин. Гомогенизацию диспергированной структуры MOR проводят при дополнительном интенсивном перемешивании (350 об/мин) геля в течение 30 мин. После этого обеспечивают созревание геля в течение 3 ч с перемешиванием (180 об/мин) при температуре окружающей среды. Корректируют рН геля, и гель загружают в тефлоновую чашку, которую затем устанавливают в 300 мл автоклав. Синтез проводят в течение 96 ч при 100°C.

После завершения синтеза реактор охлаждают, и полученный материал мезопористого молекулярного сита с заделкой цеолитной структурой MOR смешивают с дистиллированной водой, фильтруют и тщательно промывают дистиллированной водой в течение 3 ч. Синтезированный таким образом Na-MM-MO-4MO-96h сушат при 110°C и прокаливают при 550°C с использованием операции стадии прокаливания в течение 10 ч.

Пример 24b

Получение Н-MM-MO-4MO-96h

10 г Na-MM-MO-4MO-96h (натриевая форма, полученная, как указано выше) подвергают ионообменной обработке 1М водным раствором нитрата аммония или хлорида аммония в течение 24 ч при температуре окружающей среды. После ионообменной обработки полученный материал мезопористого молекулярного сита NH4-MM-MO-4MO-96h тщательно промывают дистиллированной водой, сушат при 110°C в течение 12 ч и прокаливают при 450°C в течение 4 ч в муфельной печи с использованием операции стадии прокаливания.

Рентгенограмма полученного Н-MM-MO-4MO-96h является аналогичной рентгенограмме Na-MM-MO-4MO-96h, показывая, что водная обработка нового мезопористого материала и последующая термообработка не влияют на стабильность структуры.

Пример 25

Синтез мезопористого молекулярного сита с заделкой цеолитной структурой MOR - Na-MM-MO-4MO-96h-2Al с использованием источника алюминия

Пример 25а

Синтез Na-MM-MO-4MO-96h-2Al

Синтез Na-MM-MO-4MO-96h-2Al проводят при получении растворов А, В и С. Раствор А получают смешением 8,3 г дымящего диоксида кремния с 51,7 г дистиллированной воды при непрерывном перемешивании (196 об/мин) в течение 20 мин. Раствор В получают при добавлении 18,10 г силиката тетраметиламмония к 11,7 г силиката натрия с непрерывным перемешиванием (180 об/мин), и полученную смесь перемешивают в течение 20 мин. Раствор С получают растворением 26,34 г тетрадецилтриметиламмонийбромида в 174,3 мл дистиллированной воды с интенсивным перемешиванием (336 об/мин) в течение 20 мин. Раствор В медленно (в течение 15 мин) добавляют к раствору А с интенсивным перемешиванием (320 об/мин), и после добавления всего раствора В смесь перемешивают в течение дополнительных 20 мин. Раствор С медленно (в течение 20 мин) добавляют к смеси (А+В) с интенсивным перемешиванием (336 об/мин), и после добавления всего раствора С смесь дополнительно перемешивают в течение 20 мин.

3,7 г предшественника зародышей цеолита MOR, полученного в примере 23, вводят в гелевые смеси (А+В+С) при интенсивном перемешивании (350 об/мин) в течение 25 мин, и затем к гелю добавляют 1,9 г изопропилата алюминия при интенсивном перемешивнии (350 об/мин), и гель перемешивают в течение 30 мин. После этого обеспечивают созревание геля в течение 3 ч с перемешиванием (180 об/мин) при температуре окружающей среды. Корректируют рН геля, и гель загружают в тефлоновые чашки, которые затем устанавливают в 300 мл автоклавы. Синтез проводят в течение 96 ч при 100°C.

После завершения синтеза реактор охлаждают в течение 30 мин, и материал мезопористого молекулярного сита с заделкой цеолитной структурой MOR смешивают с дистиллированной водой, фильтруют и тщательно промывают дистиллированной водой в течение 3 ч. Синтезированный таким образом Na-MM-MO-4MO-96h-2Al сушат при 110°C и прокаливают при 550°C с использованием операции стадии прокаливания в течение 10 ч.

Пример 25b

Получение Н-MM-MO-4MO-96h-2Al

10 г Na-MM-MO-4MO-96h-2Al (натриевая форма, полученная, как указано выше) подвергают ионообменной обработке 1М водным раствором нитрата аммония или хлорида аммония в течение 24 ч при температуре окружающей среды. После ионообменной обработки полученный материал мезопористого молекулярного сита NH4 -MM-MO-4MO-96h-2Al тщательно промывают дистиллированной водой, сушат при 110°C в течение 12 ч и прокаливают при 450°C в течение 4 ч в муфельной печи с использованием операции стадии прокаливания.

Рентгенограмма полученного Н-MM-MO-4MO-96h-2Al является аналогичной рентгенограмме Na-MM-MO-4MO-96h-2Al, показывая, что водная обработка нового мезопористого материала и последующая термообработка не влияют на стабильность структуры.

Пример 26

Синтез мезопористого молекулярного сита с заделкой цеолитной структурой MOR - Na-MM-MO-4MO-96h-2Al-35 с использованием источника алюминия

Пример 26а

Синтез Na-MM-MO-4MO-96h-2Al-35

Синтез Na-MM-MO-4MO-96h-2Al-35 проводят при получении растворов А, В и С. Раствор А получают смешением 4,4 г дымящего диоксида кремния с 51,7 г дистиллированной воды при непрерывном перемешивании (196 об/мин) в течение 20 мин. Раствор В получают при добавлении 18,10 г силиката тетраметиламмония к 11,7 г силиката натрия с непрерывным перемешиванием (180 об/мин), и смесь перемешивают в течение 20 мин. Раствор С получают растворением 26,3 г тетрадецилтриметиламмонийбромида в 174,3 мл дистиллированной воды с интенсивным перемешиванием (336 об/мин) в течение 20 мин. Раствор В медленно (в течение 15 мин) добавляют к раствору А с интенсивным перемешиванием (320 об/мин), и после добавления всего раствора В смесь перемешивают в течение дополнительных 20 мин. Раствор С медленно (в течение 20 мин) добавляют к смеси (А+В) с интенсивным перемешиванием (336 об/мин), и после добавления всего раствора С смесь дополнительно перемешивают в течение 20 мин.

3,7 г предшественника зародышей цеолита MOR, полученного в примере 45, вводят в гелевую смесь (А+В+С) при интенсивном перемешивании (320 об/мин) в течение 25 мин. Затем добавляют 1,9 г изопропилата алюминия и перемешивают в течение 20 мин. После этого обеспечивают созревание геля в течение 3 ч с перемешиванием (180 об/мин) при температуре окружающей среды. Корректируют рН геля, и гель загружают в тефлоновые чашки, которые затем устанавливают в 300-мл автоклав. Синтез проводят в течение 96 ч при 100°C.

После завершения синтеза реактор охлаждают в течение 30 мин, и материал мезопористого молекулярного сита с заделкой цеолитной структурой MOR смешивают с дистиллированной водой, фильтруют и тщательно промывают дистиллированной водой в течение 3 ч. Синтезированный таким образом Na-MM-MO-4MO-96h-2Al-35 сушат при 110°C и прокаливают при 550°C с использованием операции стадии прокаливания в течение 10 ч.

Пример 26b

Получение Н-MM-MO-4MO-96h-2Al-35

10 г Na-MM-MO-4MO-96h-2Al-35 (натриевая форма, полученная, как указано выше) подвергают ионообменной обработке 1М водным раствором нитрата аммония или хлорида аммония в течение 24 ч при температуре окружающей среды. После ионообменной обработки полученный материал мезопористого молекулярного сита NH4 -MM-MO-4MO-96h-2Al-35 тщательно промывают дистиллированной водой, сушат при 110°C в течение 12 ч и прокаливают при 450°C в течение 4 ч в муфельной печи с использованием операции стадии прокаливания.

Пример 27

Получение материала Н-MM-MO-4MO-96h-2Al, модифицированного платиной

В 5 г Н-MM-MO-4MO-96h-2Al вводят 2 мас.% Pt с использованием способа пропитки. Указанную пропитку проводят в роторном испарителе при 80°C в течение 24 ч с использованием водного раствора гексахлорплатиновой кислоты. Н-MM-MO-4MO-96h-2Al с пропиткой 2 мас.% Pt сушат при 100°C и прокаливают при 450°C.

Рентгенограмма полученного Pt-Н-MM-MO-4MO-96h-2Al является аналогичной рентгенограмме Na-MM-MO-4MO-96h-2Al, указывая на гидротермическую стабильность нового мезопористого молекулярного сита с заделкой цеолитной структурой MOR.

Пример 28

Получение материала Н-MM-MO-4MO-96h-2Al-35, модифицированного платиной

В 5 г Н-MM-MO-4MO-96h-2Al-35 вводят 2 мас.% Pt с использованием способа пропитки. Указанную пропитку проводят в роторном испарителе при 80°C в течение 24 ч с использованием водного раствора гексахлорплатиновой кислоты. Н-MM-MO-4MO-96h-2Al-35 с пропиткой 2 мас.% Pt сушат при 100°C и прокаливают при 450°C.

Рентгенограмма Pt-Н-MM-MO-4MO-96h-2Al-35 является аналогичной рентгенограмме Na-MM-MO-4MO-96h-2Al-35, указывая на гидротермическую стойкость нового мезопористого молекулярного сита с заделкой цеолитной структурой MOR.

Пример 29

Испытание на термостойкость

Испытание на термостойкость проводят при нагревании материалов согласно настоящему изобретению при температурах 700°C, 800°C, 900°C и 1000°C в воздушной среде в течение 24 ч. После указанной обработки материалы анализируют методами БЭТ и ДРЛ. Пример ДРЛ-диаграммы образцов, обработанных при 1000°C, представлен на фиг.5. Методами БЭТ или ДРЛ не было определено различие в структуре материалов.

Пример 30

Испытание на механическую прочность

Испытание на механическую прочность материалов согласно настоящему изобретению проводят при прессовании порошка материала при давлении 20000 Н. Формованные таблетки измельчают и рассеивают на различные размеры частиц. Различные фракции рассеянного порошка анализируют методами ДРЛ и БЭТ. Различия в ДРЛ-диаграммах и в площади поверхности по методу БЭТ не наблюдаются. Результаты представлены в нижеследующей таблице 4, где даются примеры определения N2-адсорбции и результаты испытаний на механическую прочность.

Таблица 4
Площадь поверхности и пористость по методу N2-адсорбции Площадь поверхности по методу БЭТ (м2/г) Площадь поверхности по методу БДХ (м2/г) Объем пор по методу БЭТ (см3/г) Объем пор по методу БДХ (см3/г) Диаметр пор по методу БЭТ (каталитические материалы и способ их получения, патент № 2397018 )Диаметр пор по методу БДХ (каталитические материалы и способ их получения, патент № 2397018 )
H-MM5-96h-4ZS 0,6-0,85 775731 0,5940,513 32 28
H-MM5-96h-4ZS <0,007748 682 0,5630,489 31 29

Пример 31

Воспроизводимость способов

Одинаковую методику получения материалов согласно настоящему изобретению (пример 8) повторяют в различных масштабах. Партии показывают очень подобные свойства, как показано в таблице 5, представляющей результаты определения воспроизводимости.

Таблица 5
каталитические материалы и способ их получения, патент № 2397018 Si мас.% Al (мас.%) Si/AlMCM-41 a 0 (Е)MFI a0 (Е)
Пример 842,3 3,9 10,438 19,72
Пример 8

(в 10 раз больший уровень)
42,73,8 10,936 19,73

Примеры 32-41

Олигомеризация 1-децена с использованием материалов согласно настоящему изобретению в качестве катализаторов

Олигомеризация 1-децена с использованием материалов согласно настоящему изобретению в качестве катализаторов показывает высокую активность, низкую дезактивацию и регенерируемость катализаторов согласно настоящему изобретению. Каталитические материалы согласно настоящему изобретению и сравнительные катализаторы согласно прототипу испытывают в олигомеризации 1-децена. Испытания проводят в реакторе периодического действия при перемешивании. Температура реакции составляет 200°C. Время реакции составляет 24 ч. Давление в реакторе составляет 20 бар.

Продукты реакции анализируют методами ГХ и ГХ-дистилляции, и пики идентифицируются по отношению к числу углеродных атомов молекулы. Молекулы с числом углеродных атомов выше 20 в ГХ-анализе идентифицируются как смазочные компоненты. Молекулы, кипящие выше 343°C, идентифицируются в ГХ-дистилляции как смазочные молекулы.

Катализаторы, использованные в экспериментах, регенерируют в муфельной печи в воздушной среде при температуре 540°C.

Результаты испытаний на реакцию олигомеризации 1-децена обобщены в следующей таблице 6.

Таблица 6
ПримерКатализатор % конверсии Селективность к смазке, % Выход по смазке, %
32ZSM-5 (пример 1)20 30,5
33 MSA-1 (пример 2) 0,587 0,4
34 MSA-3 (пример 4) 1 870,9
35 MCM-41 (пример 5) 4597 29
36 H-MM5-96h-4ZS2A135 (пример 9)71 97 69
37 H-MMBE-96h-4B-2Al (пример 12)78 9473
38 H-MMBE-96-4B-2A135 (пример 13) 8093 74
39 H-MM5-96h-4ZS2A135 Регенерированный 7098 69
40 H-MMBE-96h-4B-2Al Регенерированный 76 9673
41 H-MMBE-96-4B-2A135 Регенерированный 7993 72

Примеры 42 и 43

Реакция изобутена с материалами согласно настоящему изобретению в качестве катализаторов

Испытания на реакцию изобутена проводят с материалами согласно настоящему изобретению в качестве катализаторов, результаты которых показывают высокую активность и низкую дезактивацию катализаторов согласно настоящему изобретению. Катализаторы испытывают в реакторе с неподвижным слоем при температуре реакции 100°C при 20 бар и с массовой часовой объемной скоростью ((МЧОС)(WHSV)) 20. Наблюдается высокая активность и отсутствие дезактивации катализаторов. В качестве примера реакции изобутена катализатор примера 8 сравнивается со сравнительным катализатором (пример 1) на фиг.7 в димеризации изобутана.

Примеры 44-47

Испытания на изомеризацию парафинов с материалами согласно настоящему изобретению в качестве катализаторов

Целью проведения тестовой реакции изомеризации н-бутана является подтверждение химической природы взаимодействия в мезопористом молекулярном сите с заделкой цеолитной структурой MFI согласно настоящему изобретению, образования центров сильных кислот Бренстеда и гидротермической стойкости нового материала. Изомеризация н-бутана используется в качестве тестовой реакции для оценки кислотности катализаторов. Изомеризацию н-бутана проводят с протонной формой новых мезопористых молекулярноситовых катализаторов с оценкой кислотных свойств. Отмечено, что Н-форма (H-MM5-96h-4ZS-2Al-35) катализатора с самым низким соотношением Si/Al показывает самую высокую конверсию н-бутана, явно указывая на образование центров сильных кислот Бренстеда и образование нового мезопористого молекулярного сита с заделкой цеолитной структурой MFI с истинно химическим связыванием.

Регенерацию Н-формы и Pt-H-MM5 катализаторов проводят в присутствии воздуха при 450°C в течение 2 ч. Целью регенерации является оценка, можно ли восстановить каталитическую активность, а, кроме того, также оценить гидротермическую стойкость катализатора в процессе регенерации катализатора, так как в процессе регенерации получается вода. Было подтверждено, что как Н-форма, так и катализаторы, модифицированные Pt, почти полностью сохраняют свою каталитическую активность, подтверждая гидротермическую стойкость структуры.

Изомеризацию н-бутана до изобутана исследуют с протонной формой катализатора и катализаторами H-MM5-96h-4ZS-2Al, модифицированными 2 мас.% Pt, в кварцевом микрореакторе с неподвижным слоем. Эксперименты проводят при давлении, близком к атмосферному, и используемые количества катализатора составляют 0,3-1,0 г. Реагент н-бутан подают в реактор с использованием водорода в качестве газа-носителя. Анализирование продукта проводят на линии с использованием газового хроматографа, оборудованного детектором ионизации пламени ((ДИП)(FID)) и капиллярной колонкой. Результаты тестовых реакций изомеризации н-бутана приведены в таблице 7, представляющей изомеризацию н-бутана при температуре 450°C, МЧОС 1,23 ч-1, соотношении н-бутан/водород 1:1.

Таблица 7

Конверсия н-бутана
№ примера КатализаторКонверсия

(мас.%)
44H-MM5-96h-4ZS-2AI 40
45H-MM5-96h-4ZS-2AI-35 70
46Pt-H-MM5-96h-4ZS-2AI-35-C свежийкаталитические материалы и способ их получения, патент № 2397018 87
47 Pt-H-MM5-96h-4ZS-2AI-35-C регенерированный 85

Примеры 48 и 49

Эксперименты по изомеризации 1-бутена с материалами согласно настоящему изобретению в качестве катализаторов

Целью проведения тестовой реакции изомеризации 1-бутена является подтверждение химической природы взаимодействия в мезопористом молекулярном сите с заделкой цеолитной структурой MFI согласно настоящему изобретению, образования центров сильных кислот Бренстеда и гидротермической стойкости нового материала.

Изомеризация 1-бутана также используется в качестве тестовой реакции для исследования изомеризации 1-бутена до изобутена. Кроме того, целью является изучение возможности регенерации использованного катализатора и оценка того, сохраняет ли катализатор свою каталитическую активность после регенерации. Было установлено, что регенерированный катализатор показывает почти такую же конверсию (97,2 мол.%) 1-бутена, как соответствующий свежий катализатор (97 мол.%), указывая также на гидротермическую стойкость катализатора.

Изомеризацию 1-бутена до изобутена исследуют с протонной формой катализатора H-MM5-96h-4ZS-2Al в кварцевом микрореакторе с неподвижным слоем. Эксперименты проводят при давлении, близком к атмосферному, при температуре 350°C с МЧОС 10 ч-1 .

Реагент 1-бутен подают в реактор с использованием водорода в качестве газа-носителя при соотношении 1:1. Анализирование продукта проводят на линии с использованием газового хроматографа, оборудованного детектором ионизации пламени ((ДИП) (FID)) и капиллярной колонкой. После ГХ устанавливают холодильник для облегчения отбора проб жидкого продукта из тяжелых соединений. Первую пробу отбирают через 10 мин времени на потоке ((TOS)(ВНП)). Первые 10 проб отбирают с 1 ч интервалами, а последующие пробы - каждые 3 ч.

Пример 50

Эксперимент по раскрытию кольца с материалами согласно настоящему изобретению в качестве катализаторов

Активность и селективность катализатора согласно настоящему изобретению в реакции по раскрытию декалинового кольца определяют в 50 мл автоклаве при 250°C при давлении водорода 20 бар. Декалин (10 мл, каталитические материалы и способ их получения, патент № 2397018 9,0 г) вводят при комнатной температуре в реактор, содержащий 1 г катализатора, восстановленного при 250°C. Давление увеличивают водородом до 10 бар. Затем реактор помещают на масляную баню при 250°C. Когда температура в реакторе достигает 250°C, давление водорода корректируют до 20 бар. Время реакции составляет 5 ч. Затем реактор быстро охлаждают до -10°C. После охлаждения реактор взвешивают. Давление в реакторе сбрасывают. Продукт, содержащий катализатор, отбирают в пробоотборник и ГХ-пробу отбирают иглой с фильтром. Для катализатора согласно настоящему изобретению, полученного в соответствии с примером 16, конверсия декалина составляет 81%, и селективность к продуктам реакции раскрытия кольца составляет 32%.

Примеры 51 и 52

Эксперименты по гидрокрекингу с материалом согласно настоящему изобретению в качестве катализатора

Активность и селективность катализатора согласно настоящему изобретению (катализатор примера 17) в реакции гидрокрекинга определяют в автоклаве при 300°C (пример 51) и 350°C (пример 52) при давлении водорода 30 бар. Парафиновую смесь (примерно 80 г) вводят при комнатной температуре в реактор, содержащий 2 г катализатора, восстановленного при 400°C. Давление увеличивают водородом до 30 бар. Когда температура в реакторе достигает 300°C (пример 51) или 350°C (пример 52), давление водорода корректируют до 30 бар. Время реакции составляет 65 ч. После охлаждения реактор взвешивают. Давление в реакторе сбрасывают. Продукт анализируют методом ГХ. Конверсия парафинов составляет 60% (пример 51) и 65% (пример 52), и селективность к продуктам крекинга в обоих случаях составляет 100%.

Класс B01J29/00 Катализаторы, содержащие молекулярные решетки

катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
фильтр для фильтрования вещества в виде частиц из выхлопных газов, выпускаемых из двигателя с принудительным зажиганием -  патент 2529532 (27.09.2014)
способ карбонилирования -  патент 2529489 (27.09.2014)
получение алкилированных ароматических соединений -  патент 2528825 (20.09.2014)
способ карбонилирования -  патент 2528339 (10.09.2014)
алюмосиликатный цеолит uzm-7, способ его получения и способ его использования -  патент 2528259 (10.09.2014)
фильтр для поглощения твердых частиц из отработавших газов двигателя с воспламенением от сжатия -  патент 2527462 (27.08.2014)
катализатор для процесса гидродепарафинизации и способ его получения -  патент 2527283 (27.08.2014)
способ карбонилирования с использованием связанных содержащих серебро и/или медь морденитных катализаторов -  патент 2525916 (20.08.2014)
каталитическая система и способ гидропереработки тяжелых масел -  патент 2525470 (20.08.2014)

Класс C01B39/02 кристаллические алюмосиликатные цеолиты, их изоморфные соединения; прямое получение их; получение исходя из реакционной смеси, содержащей кристаллический цеолит другого типа, или из предварительно полученных реагентов; их последующая обработка

способ ускоренной гидротермальной обработки при синтезе мезоструктурированного силикатного материала типа sba-15 -  патент 2529549 (27.09.2014)
способы получения наноцеолитов и способ извлечения наноцеолитов из водной суспензии -  патент 2527081 (27.08.2014)
цеолитная композиция uzm-35, способ получения и способы применения -  патент 2525417 (10.08.2014)
uzm-45 алюмосиликатный цеолит, способ его получения и процессы с его использованием -  патент 2521578 (27.06.2014)
модифицированные цеолиты y с тримодальной внутрикристаллической структурой, способ их получения и их применение -  патент 2510293 (27.03.2014)
поверхностно-модифицированные цеолиты и способы их получения -  патент 2506226 (10.02.2014)
цеолитовый катализатор с цеолитовой вторичной структурой -  патент 2493909 (27.09.2013)
селективный катализатор для конверсии ароматических углеводородов -  патент 2491121 (27.08.2013)
цеолит y -  патент 2487756 (20.07.2013)
катализаторы гидрирования со связующими, имеющими низкую площадь поверхности -  патент 2480279 (27.04.2013)

Класс C07C2/12 с кристаллическими алюмосиликатами, например молекулярными ситами

цеолитная композиция uzm-35, способ получения и способы применения -  патент 2525417 (10.08.2014)
uzm-45 алюмосиликатный цеолит, способ его получения и процессы с его использованием -  патент 2521578 (27.06.2014)
способ селективного получения димеров норборнена -  патент 2505514 (27.01.2014)
алюмосиликатный цеолит uzm-37 -  патент 2499631 (27.11.2013)
катализатор, содержащий цеолит izm-2 и, по меньшей мере, один металл, и его применение в способах превращения углеводородов -  патент 2488442 (27.07.2013)
способ получения олигомеров высших линейных -олефинов -  патент 2487112 (10.07.2013)
способ получения олигомеров высших линейных альфа-олефинов -  патент 2483052 (27.05.2013)
катализатор для олигомеризации альфа-олефинов, способ его получения и способ олигомеризации альфа-олефинов -  патент 2462310 (27.09.2012)
способ получения олефиновых олигомеров -  патент 2437920 (27.12.2011)
способ содимеризации олефинов -  патент 2434834 (27.11.2011)

Класс C07C5/22 изомеризацией

алюмосиликатный цеолит uzm-37 -  патент 2499631 (27.11.2013)
процесс изомеризации с использованием модифицированного металлом мелкокристаллического мтт молекулярного сита -  патент 2493236 (20.09.2013)
оксидный катализатор для изомеризации легких бензиновых фракций -  патент 2486005 (27.06.2013)
катализатор и способ валентной изомеризации квадрициклана в норборнадиен -  патент 2470030 (20.12.2012)
способы геометрической изомеризации галоидированных олефинов -  патент 2455272 (10.07.2012)
4-(4-алкилциклогексил)бензальдегид -  патент 2446141 (27.03.2012)
комплексный способ получения ароматических углеводородов -  патент 2413712 (10.03.2011)
способ изомеризации легких бензиновых фракций, содержащих c7-c8 парафиновые углеводороды -  патент 2408659 (10.01.2011)
способ получения смеси гексацикло[8.4.0.02,17.03,14.04,8.09,13]тетрадецена-5 и гексацикло[6.6.0.02,6.05,14.07,12.09,13]тетрадецена-3 -  патент 2375341 (10.12.2009)
способ изомеризации исходного сырья, содержащего бензол, и установка для его осуществления -  патент 2374216 (27.11.2009)

Класс C10G47/18 катализаторами, содержащими металлы группы платины или их соединения

способ получения жидкого топлива -  патент 2451714 (27.05.2012)
способы получения жидкого топлива -  патент 2443756 (27.02.2012)
способ производства жидкого топлива -  патент 2437716 (27.12.2011)
способ гидрокрекинга парафина -  патент 2428458 (10.09.2011)
катализатор гидрокрекинга и способ получения вещества основы топлива -  патент 2428253 (10.09.2011)
способ гидрокрекинга парафина и способ получения материала топливной основы -  патент 2425093 (27.07.2011)
катализатор гидрокрекинга и способ получения основного компонента топлива -  патент 2417839 (10.05.2011)
способ улучшения температуры потери текучести парафинового сырья с использованием катализатора на основе цеолита nu-86 -  патент 2178451 (20.01.2002)
способ получения катализатора на основе нецеолитного молекулярного сита и каталитические макрочастицы -  патент 2176548 (10.12.2001)
катализатор для гидрокрекинга углеводородов и способ гидрокрекинга углеводородов -  патент 2051738 (10.01.1996)
Наверх