способ получения метанола

Классы МПК:C07C31/04 метиловый спирт 
C07C29/151 водородом или водородсодержащими газами
Автор(ы):, , ,
Патентообладатель(и):ОАО "Тольяттиазот" (RU)
Приоритеты:
подача заявки:
2006-02-28
публикация патента:

Изобретение относится к способу получения метанола контактированием газовой смеси, содержащей оксиды углерода и водород, с медно-цинковым катализатором при температуре 200-290°С, давлении 5-15 МПа и объемной скорости 3000-10000 ч-1. При этом конвертированный газ состава, об.%: Н2 - 64,0-75,5; Ar - 0,02-0,08; N2 - 0,05-2,0; СН4 - 1,0-3,6; СО - 10,7-19,4; CO 2 - 3,3-10,4, подаваемый с печи риформинга с объемной скоростью 800-2000 ч-1, предварительно смешивают с диоксидом углерода в объемном соотношении (3-100):1 и вместе с газами циркуляции пропускают последовательно через 4 катализаторные зоны горизонтального реактора при их объемном соотношении (1,20-1,40):(0,85-0,95):(0,9-1,2):(0,9-1,1), разделенные двумя котлами и одним теплообменником, с охлаждением реакционного газового потока и отделением метанола в сепарирующем устройстве. Способ позволяет усовершенствовать технологическую схему получения метанола при сохранении на высоком уровне показателей процесса и продлении срока службы катализатора. 1 табл., 2 ил. способ получения метанола, патент № 2331625

способ получения метанола, патент № 2331625 способ получения метанола, патент № 2331625

Формула изобретения

Способ получения метанола контактированием газовой смеси, содержащей оксиды углерода и водород, с медно-цинковым катализатором при температуре 200-290°С, давлении 5-15 МПа и объемной скорости 3000-10000 ч-1, отличающийся тем, что конвертированный газ состава, об.%: Н2 64,0-75,5; Ar 0,02-0,08; N2 0,05-2,0; СН4 1,0-3,6; СО 10,7-19,4; CO 2 3,3-10,4, подаваемый с печи риформинга с объемной скоростью 800-2000 ч-1, предварительно смешивают с диоксидом углерода в объемном соотношении (3-100):1 и вместе с газами циркуляции пропускают последовательно через 4 катализаторные зоны горизонтального реактора при их объемном соотношении (1,20-1,40):(0,85-0,95):(0,9-1,2):(0,9-1,1), разделенные двумя котлами и одним теплообменником, с охлаждением реакционного газового потока и отделением метанола в сепарирующем устройстве.

Описание изобретения к патенту

Изобретение относится к области основного органического синтеза, в частности к производству метанола из водорода и оксидов углерода.

Известен [GB №1159095, МПК C07С 32/00, заявл. 18.08.65 г., опубл. 23.07.69 г.] способ получения метанола, включающий реакцию оксидов углерода с водородом под давлением 1,0-15,0 МПа (предпочтительно от 4,0 до 8,0 МПа), температуре 160-300°С (предпочтительно от 190 до 270°С), объемной скорости 7000-25000 ч -1 в присутствии катализатора, содержащего оксиды меди и цинка и, по крайней мере, один трудновосстанавливаемый оксид металла второй - четвертой групп Периодической системы элементов Д. И. Менделеева, выделение метанола из реакционной смеси и рециркуляцию не прореагировавших в синтезе метанола веществ. В качестве сырья применяют смесь водорода с оксидом и диоксидом углерода, в которой содержание СО2 варьирует в интервале 1-20 об.% (предпочтительно 3-12 об.%). В реакционном газе, контактирующем с катализатором, объемное отношение водорода к сумме оксидов углерода в 1,3-3,0 раза больше стехиометрического.

К недостаткам данного способа следует отнести пониженную удельную производительность медно-цинкового катализатора, а также высокие энергетические затраты на рециркуляцию газовой смеси.

Известен [SU №1442514, МПК C07С 29/15, 31/04] способ получения метанола контактированием смеси оксидов углерода и водорода с медьсодержащим катализатором при повышенных температуре и давлении в две стадии с последующим выделением метанола, причем с целью увеличения удельной производительности катализатора и упрощения технологической схемы на первой стадии газовую смесь, содержащую СО 0,7-30,0 об.%, CO 2 0,3-23,6 об.% при соотношении СО:CO2 , равном (0,03-87):1, контактируют с катализатором в реакторном узле, состоящем из одного проточного реактора или каскада проточных реакторов, и на второй стадии процесс ведут при концентрации CO2 во входящей газовой смеси 0,4-20,0 об.% и соотношении СО:CO2, равном (0,25-55), с последующим выделением метанола и воды известными приемами в нескольких устройствах или в едином для обеих стадий устройстве.

Недостатком указанного способа является невысокая удельная производительность катализатора при получении метанола из газовых смесей с высоким содержанием диоксида углерода, а также повышенное содержание воды в метаноле-сырце, превышающем 30 мас.%.

Наиболее близким по совокупности признаков к заявляемому изобретению является способ получения метанола [RU №2181117, МПК C07С 29/154, 31/04] контактированием газовой смеси, содержащей оксиды углерода и водород, с медьсодержащим катализатором при температуре 190-290°С, давлении 5,0-10,0 МПа и объемной скорости 4500-100000 ч -1, причем исходную газовую смесь, содержащую 1,0-33,7 об.% оксида углерода, 0,3-22,5 об.% диоксида углерода при объемном отношении водорода к сумме оксидов углерода, равном 1,91-5,60, а также 0,5-50 об.% азота, последовательно пропускают через каскад проточных реакторов трубчатого типа в одну стадию, а метанол и воду отделяют после каждого реактора.

Рассматриваемый каскадный способ позволяет существенно повысить удельную производительность катализатора, однако его реализация сопряжена со значительными материальными затратами и технически сложна. Кроме того, при его осуществлении возможно существенное снижение срока эксплуатации медно-цинкового катализатора, а производительность метанольной установки пропорциональна количеству проточных реакторов.

В основу изобретения поставлена задача усовершенствования технологической схемы получения метанола при сохранении на высоком уровне показателей процесса и продлении срока службы катализатора.

Поставленная задача достигается тем, что в предлагаемом способе метанол синтезируют контактированием газовой смеси, содержащей оксиды углерода и водород, с медно-цинковым катализатором при температуре 200-290°С, давлении 5-15 МПа и объемной скорости 3000-10000 ч-1, при этом согласно изобретению конвертированный газ состава, об.%: Н2 - 64,0-75,5; Ar - 0,02-0,08; N2 - 0,05-2,0; СН4 - 1,0-3,6; СО - 10,7-19,4; CO 2 - 3,3-10,4, подаваемый с печи риформинга с объемной скоростью 800-2000 ч-1, предварительно смешивают с диоксидом углерода в объемном отношении (3-100):1 и вместе с газами циркуляции пропускают последовательно через 4 катализаторные зоны горизонтального реактора при их объемном соотношении (1,20-1,40):(0,85-0,95):(0,9-1,2):(0,9-1,1), разделенные двумя котлами и одним теплообменником, с выделением метанола.

Последняя стадия хорошо изучена и предусматривает охлаждение реакционной смеси в рекуперативном теплообменнике и холодильнике-конденсаторе и отделение метанола-сырца в сепарирующем устройстве [М.М.Караваев, А.П.Мастеров. Производство метанола. М.: Химия, 1973. С.78 и далее].

Отличительными особенностями предлагаемого способа получения метанола являются следующие:

- конвертированный газ состава, об.%: Н2 - 64,0-75,5; Ar - 0,02-0,08; N2 - 0,05-2,0; СН4 - 1,0-3,6; СО - 10,7-19,4; CO 2 - 3,3-10,4, подаваемый с печи риформинга с объемной скоростью 800-2000 ч-1, предварительно смешивают с диоксидом углерода в объемном отношении (3-100):1 и вместе с газами циркуляции подают в реактор с объемной скоростью 3000-10000 ч-1:

- функции каскада реакторов выполняют 4 катализаторные зоны горизонтального реактора, взятые в объемном соотношении (1,20-1,40):(0,85-0,95):(0,9-1,2):(0,9-1,1), разделенные двумя котлами и одним теплообменником.

Хорошо известно, что переработка синтез-газа с содержанием оксида углерода более 30 об.% и азота свыше 40 об.% неэкономична. По указанной причине в предлагаемом способе используется синтез-газ, в котором дозировки СО и N2 поддерживаются ниже 15 об.%, а объемное отношение Н2/(СО+CO 2) находится в интервале от 3 до 5. Важно отметить, что для протекания последовательных реакций

способ получения метанола, патент № 2331625

способ получения метанола, патент № 2331625

с требуемой скоростью концентрации СО и CO 2 должны находиться в интервале 5-15 об.%.

Для достижения указанной концентрации CO2 используется подпитка конвертированного газа чистым диоксидом углерода.

Ограничение верхнего предела по CO2 в синтез-газе в 15 об.% объясняется возможностью снижения скорости образования метанола при более высоком содержании диоксида углерода в газовой смеси,

В отличие от известных методов получения метанола в предлагаемом способе функции каскада проточных реакторов выполняют катализаторные зоны реактора горизонтального типа, разделенные двумя котлами 1 и одним теплообменником 2 для утилизации тепла экзотермических реакций (Фиг.1). Это существенно упрощает технологическую схему процесса и позволяет на сепарирующих устройствах разных конструкций отделять метанолсодержащую фракцию для последующей ее ректификации.

Таким образом, сущностью предлагаемого технического решения является способ получения метанола контактированием газовой смеси, содержащей оксиды углерода и водород, с медно-цинковым катализатором при температуре 200-290°С, давлении 5-15 МПа и объемной скорости 3000-10000 ч-1, причем конвертированный газ состава, об.%: Н2 - 64,0-75,5; Ar - 0,02-0,08; N2 - 0,05-2,0; СН4 - 1,0-3,6; СО - 10,7-19,4; CO 2 - 3,3-10,4, подаваемый с печи риформинга с объемной скоростью 800-2000 ч-1, предварительно смешивают с диоксидом углерода в объемном отношении (3-100):1 и вместе с газами циркуляции пропускают последовательно через 4 катализаторные зоны горизонтального реактора, взятые в объемном соотношении (1,20-1,40):(0,85-0,95):(0,9-1,2):(0,9 -1,1), разделенные двумя котлами и одним теплообменником, с охлаждением реакционного газового потока и отделением метанола в сепарирующем устройстве.

На фиг.2 приведена принципиальная схема технологического процесса.

Конвертированный газ с печи риформинга (линия I) смешивается с чистым диоксидом углерода (линия II) и газами циркуляции с сепаратора метанола (линия III) и подается на всас компрессора 1. Компремированный синтез-газ подогревается в рекуперативном теплообменнике 2 и встроенном теплообменнике 3 и поступает в горизонтальный реактор 4. Выходящая из реактора метанолсодержащая газовая смесь последовательно охлаждается потоком синтез-газа в рекуперативном теплообменнике 2 и далее воздушным холодильником 5 и холодильником-конденсатором 6. После отделения метанола-сырца в сепараторе 7 газовый циркуляционный поток направляется на смешение с конвертированным газом и диоксидом углерода.

В качестве катализатора синтеза метанола использовали продукт в виде цилиндрических таблеток диаметром 5,2 мм и высотой 5,4 мм, имеющих состав, мас.%: CuO - 64; ZnO - 24; Al2О 3 - 10; HgO - 2. Его загрузка по зонам реактора (по ходу следования синтез-газа) составила, м3:

первая - 29,8; вторая - 21,6; третья - 23,8; четвертая - 23,8.

В таблице приведены примеры осуществления предлагаемого способа.

Из описания изобретения и таблицы следует, что по заявленному техническому решению удается существенно упростить технологическую схему процесса, сохранив на высоком уровне его показатели при длительной эксплуатации катализатора.

Таблица.
Условия и результаты синтеза метанола по примерам его осуществления.
Показатель ПрототипПримеры
12 3
Количество реакторов каскад один  
Температура в реакторе, °Cнет данных x)250240 240
Температура на выходе из реактора, °С220-280 х)270262 265
Давление в реакторе, МПа5,0-10,0Х) 10,510,0 9,7
Объемная скорость синтез-газа на входе в реактор, ч-1. 4500-10000037004220 4700
Объемное отношение Н2/(СО+CO2) в синтез-газе на входе в реактор.1,91-5,6 х)3,74,0 4.,8
Состав синтез-газа на входе в первый реактор, об.%:      
СО1,0-33,7 14,811,2 7,1
CO2 0,3-22,55,2 6,86,8
N 20,5-50,00,6 0,70,5
Н2Oотс.  0,05 
H2 38,0-84,074,072,0 66,7
Ar нет данных менее 0,05 
СН 3ОНотс.0,2 0,10,2
СН4  остальное 
Объем добавляемого диоксида углерода, нм3-10000 1500020000
Объемное отношение конвертированный газ: диоксид углерода. -9:1 7:15,5:1
Объем циркулирующего газа, нм3 -270000302000 340000
Срок службы катализаторанет данных  не менее 5 лет  
Съем метанола с одного реактора, т/ч9,676-43,4746,4 50,657,0
x) Данные для первого реактора в каскаде.

Класс C07C31/04 метиловый спирт 

способ получения метанола -  патент 2522560 (20.07.2014)
способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа -  патент 2520218 (20.06.2014)
способ синтеза метанола -  патент 2519940 (20.06.2014)
способ и установка для получения метанола с усовершенствованной секцией дистилляции -  патент 2512107 (10.04.2014)
способ совместного получения синтетических жидких углеводородов и метанола и установка для его осуществления, интегрированная в объекты промысловой подготовки нефтяных и газоконденсатных месторождений -  патент 2505475 (27.01.2014)
способ получения метанола из углеводородного газа газовых и газоконденсатных месторождений и комплексная установка для его осуществления -  патент 2503651 (10.01.2014)
способ прямой конверсии низших парафинов c1-c4 в оксигенаты -  патент 2485088 (20.06.2013)
способ получения метанола -  патент 2478604 (10.04.2013)
способ регенерации водометанольного раствора на нефтегазоконденсатном месторождении -  патент 2474464 (10.02.2013)
способ получения метанола -  патент 2472765 (20.01.2013)

Класс C07C29/151 водородом или водородсодержащими газами

комплексная установка для переработки газа -  патент 2524720 (10.08.2014)
способ получения метанола -  патент 2522560 (20.07.2014)
способ синтеза метанола -  патент 2519940 (20.06.2014)
способ получения метанола из углеводородного газа газовых и газоконденсатных месторождений и комплексная установка для его осуществления -  патент 2503651 (10.01.2014)
способ получения метанола -  патент 2478604 (10.04.2013)
способ получения метанола -  патент 2472765 (20.01.2013)
способ получения диметилового эфира -  патент 2469017 (10.12.2012)
масляная среда, используемая в реакции синтеза в реакторе, способ получения диметилового эфира, способ получения смеси диметилового эфира и метанола -  патент 2456261 (20.07.2012)
многореакторная химическая производственная система -  патент 2455059 (10.07.2012)
способ получения метанола из природного газа и установка для его осуществления -  патент 2453525 (20.06.2012)
Наверх