способ определения массовой концентрации кислорода в контурах под давлением с водным теплоносителем

Классы МПК:G01N27/26 путем определения электрохимических параметров; путем электролиза или электрофореза
Автор(ы):,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Государственный научный центр Российской Федерации-Научно-исследовательский институт атомных реакторов" (RU)
Приоритеты:
подача заявки:
2006-11-16
публикация патента:

Изобретение относится к аналитическому контролю молекулярного кислорода в теплоносителе и позволяет решать задачи контроля молекулярного кислорода в контурах под давлением с водным теплоносителем, в том числе в контурах исследовательских и энергетических реакторов, входящих в их состав петлевых установок, других ядерно-энергетических установок. Изобретение обеспечивает повышение достоверности получаемых результатов и расширение области использования способа. Сущность изобретения: способ определения массовой концентрации кислорода в контурах под давлением с водным теплоносителем включает отбор пробы теплоносителя, дросселирование и охлаждение пробы, измерение массовой концентрации растворенного кислорода амперометрическим датчиком. Дополнительно измеряют скорость потока теплоносителя в трубопроводе, давление в контуре и датчике, а пробу дросселируют в трубопроводе с внутренним диаметром не более 2 мм и длиной не менее чем значение, определяемое по предложенной формуле. 1 табл.

Формула изобретения

Способ определения массовой концентрации кислорода в контурах под давлением с водным теплоносителем, включающий отбор пробы теплоносителя, дросселирование и охлаждение пробы, измерение массовой концентрации растворенного кислорода амперометрическим датчиком, отличающийся тем, что дополнительно измеряют скорость потока теплоносителя в трубопроводе, давление в контуре и датчике, причем пробу дросселируют в трубопроводе с внутренним диаметром не более 2 мм и длиной не менее чем:

способ определения массовой концентрации кислорода в контурах   под давлением с водным теплоносителем, патент № 2326372

где l - длина трубопровода, м;

способ определения массовой концентрации кислорода в контурах   под давлением с водным теплоносителем, патент № 2326372 Р - разность давлений в контуре и датчике, мм вод.ст;

d - диаметр трубопровода, м;

g=9,81 м/с - ускорение свободного падения;

способ определения массовой концентрации кислорода в контурах   под давлением с водным теплоносителем, патент № 2326372 - коэффициент сопротивления, зависящий от свойств теплоносителя;

способ определения массовой концентрации кислорода в контурах   под давлением с водным теплоносителем, патент № 2326372 - скорость потока теплоносителя в трубопроводе, м/с.

Описание изобретения к патенту

Изобретение относится к аналитическому контролю молекулярного кислорода в теплоносителе и позволяет решать задачи контроля молекулярного кислорода в контурах под давлением с водным теплоносителем, в том числе в контурах исследовательских и энергетических реакторов, входящих в их состав петлевых установок, других ядерно-энергетических установок (ЯЭУ) с азотной компенсацией давления и реакторов типа ВВЭР с паровой компенсацией давления.

Известен способ определения массовой концентрации кислорода в теплоносителе с использованием автоматизированной хроматографической приставки АКВА, совместимой с газовым хроматографом [О.С.Бендерская, В.М.Махин и др. Газохимический мониторинг в петлевых экспериментах по обоснованию безопасности реакторов типа ВВЭР // Сб. докладов четвертой межотраслевой конференции по реакторному материаловедению. Димитровград, 15-19 мая 1995 г. В 4-х томах. T.1. Димитровград, 1996. С.210-220].

Способ включает операции отбора и подготовки пробы, градуировки датчика, а также операции сбора и обработки данных. Он представляет собой типичный вариант газовой хроматографии с предварительным отбором пробы водного теплоносителя и выделением газовой составляющей теплоносителя с помощью специальных сит на основе тетраполифторэтилена с последующим измерением молекулярного кислорода на детекторе по теплопроводности, сигналы которого обрабатывают с помощью расчета концентраций по хроматограммам.

Способ позволяет обеспечить высокую достоверность результатов в пределах чувствительности датчика, то есть может быть использован в качестве эталона.

Недостатком данного способа является невозможность обеспечения оперативности и непрерывности контроля. Кроме того, возможно облучение персонала во время пробоотбора и транспортировки пробы к месту проведения хроматографического анализа. Способ также не позволяет обеспечить достоверность измерений при определении значений микроконцентраций кислорода, находящихся на границе или за пределами чувствительности методики (0,07 мг/дм 3).

Наиболее близким аналогом, совпадающим с заявляемым изобретением по наибольшему количеству существенных признаков, является способ измерения содержания растворенных в водном теплоносителе газовых составляющих (кислорода и водорода) с помощью амперометрического датчика, включающий отбор, охлаждение, дросселирование пробы и измерение массовых концентраций растворенных кислорода и водорода [М.Н.Шведова, В.Г.Крицкий, М.В.Софьин и др. «Системы мониторинга состояния ВХР на базе автоматизированного химического контроля действующих энергоблоков АЭС». Препринт, М., ЦНИИ Атоминформ, 2004, 88 с.]. Способ позволяет обеспечить непрерывность и оперативность измерений, но не обеспечивает достоверность измерений, так как сохранение достоверности измерений при контроле содержания растворенных газов в контурах под давлением, например в первом контуре реакторов типа ВВЭР-1000, предполагается обеспечить применением амперометрического датчика при давлении 0,5-1,0 МПа и температуре 20-40°С, что противоречит данным по растворимости этих газов при различных значениях давления и температуры.

Целью изобретения является повышение достоверности получаемых результатов и расширение области использования способа для контроля молекулярного кислорода в контурах с водным теплоносителем под давлением. Это, прежде всего, теплоноситель первых контуров исследовательских реакторов, входящих в их состав петлевых установок, других ЯЭУ с азотной компенсацией давления и реакторов типа ВВЭР с паровой компенсацией давления.

Предлагаемый способ определения массовой концентрации кислорода в контурах под давлением с водным теплоносителем включает отбор, дросселирование и охлаждение пробы, измерение массовой концентрации растворенного кислорода амперометрическим датчиком. Дополнительно измеряют скорость потока теплоносителя в трубопроводе, давление в контуре и датчике.

Причем пробу дросселируют в трубопроводе с внутренним диаметром не более 2 мм и длиной не менее чем:

способ определения массовой концентрации кислорода в контурах   под давлением с водным теплоносителем, патент № 2326372

где l - длина трубопровода, м,

способ определения массовой концентрации кислорода в контурах   под давлением с водным теплоносителем, патент № 2326372 Р - разность давлений на концах трубопровода, мм вод. ст.,

d - диаметр трубопровода, м,

g=9,81 м/с 2 - ускорение свободного падения,

способ определения массовой концентрации кислорода в контурах   под давлением с водным теплоносителем, патент № 2326372 - коэффициент сопротивления, зависящий от свойств теплоносителя,

способ определения массовой концентрации кислорода в контурах   под давлением с водным теплоносителем, патент № 2326372 - скорость потока, м/с.

При дросселировании в капиллярном трубопроводе диаметром менее 2 мм происходит гомогенизация водно-газовой пробы, сохраняется ее представительность, и измеренное амперометрическим датчиком значение концентрации кислорода, растворенного в теплоносителе, соответствует его уровню при давлении в контуре.

Отличительные признаки в совокупности с известными позволяют достоверно измерять концентрацию молекулярного кислорода в водном теплоносителе контуров под давлением, в том числе ядерно-энергетических установок и в других технологических контурах и емкостях, при сохранении оперативности и непрерывности процесса измерения.

В случае, если отличительные признаки будут отсутствовать, применение амперометрического датчика будет невозможным из-за несоответствия физико-химических характеристик теплоносителя техническим требованиям эксплуатации датчика. Установление трубопровода диаметром большим, чем 2 мм, приведет к значительному увеличению его длины, что технически нецелесообразно. При длине менее чем способ определения массовой концентрации кислорода в контурах   под давлением с водным теплоносителем, патент № 2326372 не обеспечивается достоверность и представительность измерений, поскольку водно-газовая проба будет негомогенизирована.

Способ реализуется следующим образом.

Отбирают пробу водного теплоносителя путем подачи на байпасный измерительный участок контура, содержащий капиллярный трубопровод диаметром 1 мм и длиной не менее рассчитанной по формуле способ определения массовой концентрации кислорода в контурах   под давлением с водным теплоносителем, патент № 2326372 , на котором пробу дросселируют, охлаждают и подают в амперометрический датчик для измерения массовой концентрации молекулярно растворенного кислорода. Для определения длины трубопровода l измеряют скорость потока теплоносителя в трубопроводе и давление в контуре и датчике.

В таблице 1 приведены сравнительные результаты измерений массовых концентраций кислорода в теплоносителе исследовательского реактора МИР. Измерения проводились при d=1 мм, l=30 м, способ определения массовой концентрации кислорода в контурах   под давлением с водным теплоносителем, патент № 2326372 Р=1950 мм вод. ст., способ определения массовой концентрации кислорода в контурах   под давлением с водным теплоносителем, патент № 2326372 =3,82 м/с. Данные подтверждают достоверность измерений массовых концентраций кислорода в контурах под давлением с водным теплоносителем с применением заявляемого способа.

Результат измерения массовой концентрации кислорода с применением заявляемого способа, мг/дм 3Результат измерения массовой концентрации кислорода хроматографическим методом с приставкой «АКВА» (эталонный интегральный метод), мг/дм3
3,2123,218
1,3131,321
1,0371,060
0,1460,154
0,0430,058
0,0160,037
0,0030,028

Таким образом, заявляемый способ позволяет с высокой степенью достоверности оперативно и непрерывно проводить определение массовой концентрации кислорода в водном теплоносителе контуров под давлением, в том числе в теплоносителях первых контуров ядерно-энергетических установок и других технологических контурах и емкостях, то есть обеспечивают достижение цели.

Класс G01N27/26 путем определения электрохимических параметров; путем электролиза или электрофореза

реагенты и способы обнаружения аналитов -  патент 2518310 (10.06.2014)
способ определения индолил-уксусной кислоты методом капиллярного электрофореза -  патент 2517219 (27.05.2014)
способ определения цинка -  патент 2508539 (27.02.2014)
способ количественного определения никеля методом инверсионной вольтамперометрии на органо-модифицированном электроде -  патент 2504761 (20.01.2014)
способ идентификации металлов и сплавов и устройство для его осуществления -  патент 2501003 (10.12.2013)
способ определения общего фосфора методом капиллярного электрофореза -  патент 2499989 (27.11.2013)
способ и прибор идентификации металла или сплава -  патент 2499253 (20.11.2013)
способ измерения редокс потенциала биологических сред -  патент 2497107 (27.10.2013)
способ определения глюкозы, сахарозы, фруктозы -  патент 2492458 (10.09.2013)
способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов -  патент 2492457 (10.09.2013)
Наверх