твердые алмазы и способы их получения

Классы МПК:C01B31/06 алмаз 
C30B29/04 алмаз
C30B25/00 Выращивание монокристаллов путем химических реакций реакционноспособных газов, например химическим осаждением из паровой фазы
Автор(ы):, ,
Патентообладатель(и):КАРНЕГИ ИНСТИТЬЮШН ОФ ВАШИНГТОН (US)
Приоритеты:
подача заявки:
2004-07-14
публикация патента:

Изобретение может быть использовано в химической промышленности. Твердый монокристаллический алмаз получают путем размещения затравочного алмаза в держателе и выращивания химическим осаждением из газовой фазы, индуцированным микроволновой плазмой, при температуре примерно 1000-1100°С в атмосфере N2/CH 4=0,2-5,0 и СН4 2=12-20% при суммарном давлении 120-220 торр. Полученный монокристаллический алмаз обладает твердостью 50-90 ГПа и трещиностойкостью 11-20 МПа·м1/2. 3 н. и 4 з.п. ф-лы, 4 ил. твердые алмазы и способы их получения, патент № 2325323

твердые алмазы и способы их получения, патент № 2325323 твердые алмазы и способы их получения, патент № 2325323 твердые алмазы и способы их получения, патент № 2325323 твердые алмазы и способы их получения, патент № 2325323

Формула изобретения

1. Монокристаллический алмаз, выращенный химическим осаждением из газовой фазы, индуцированным микроволновой плазмой, обладающий твердостью 50-90 ГПа и трещиностойкостью 11-20 МПа·м 1/2.

2. Монокристаллический алмаз по п.1, где трещиностойкость составляет 18-20 МПа·м1/2.

3. Монокристаллический алмаз по п.1, где твердость составляет 60-70 ГПа.

4. Монокристаллический алмаз, обладающий трещиностойкостью 18-20 МПа·м1/2.

5. Монокристаллический алмаз по п.4, обладающий твердостью 60-70 ГПа.

6. Способ выращивания монокристаллического алмаза, включающий размещение затравочного алмаза в держателе; и выращивание монокристаллического алмаза химическим осаждением из газовой фазы, индуцированным микроволновой плазмой, при температуре от примерно 1000°С до примерно 1100°С в атмосфере N2/CH 4=0,2-5,0% и СН4 2=12-20% при суммарном давлении 120-220 торр так, что монокристаллический алмаз обладает трещиностойкостью 11-20 МПа·м 1/2.

7. Способ по п.6, в котором рост монокристаллического алмаза в результате приводит к монокристаллическому алмазу, обладающему твердостью 60-70 ГПа.

Описание изобретения к патенту

Настоящее изобретение заявляет приоритет предварительной заявки №60/486435, поданной 14 июля 2003, которая включена в данное описание в виде ссылки.

Подтверждение государственного права

Настоящее изобретение осуществлено при поддержке правительства США по гранту c номером EAR-0135626, предоставленному Национальным Научным Фондом. Правительство США имеет определенные права на данное изобретение.

Предпосылки изобретения

Область техники, к которой относится изобретение

Настоящее изобретение относится к алмазам и более конкретно к твердому алмазу, получаемому с использованием химического осаждения из газовой фазы, индуцированного микроволновой плазмой (MPCVD) в камере осаждения.

Описание предшествующего уровня техники

Крупномасштабное производство синтетического алмаза долгое время было целью как научных исследований, так и промышленного производства. Алмаз, кроме своих свойств драгоценного камня, является самым твердым известным веществом, обладает самой высокой известной теплопроводностью и прозрачен в широком спектре электромагнитного излучения. Поэтому алмаз высоко ценится вследствие широкого круга применений в ряде отраслей промышленности, наряду с его ценностью в качестве драгоценного камня. В течение, по меньшей мере, последних двадцати лет был доступен способ получения небольших количеств алмаза химическим осаждением из газовой фазы (CVD). Как сообщалось B.V.Spitsyn в «Vapor Growth of Diamond on Diamond and Other Surfaces», Journal of Crystal Growth, vol.52, pp.219-226, способ заключается в CVD алмаза на подложке с использованием комбинации метана или другого простого углеводородного газа и газа водорода при пониженных давлениях и температурах 800-1200°C. Включение газа водорода предотвращает образование графита, в то время как происходит образование центров кристаллизации и рост алмаза. В случае использования указанного способа сообщалось о скоростях роста до 1 мкм/час.

В последующей работе, например работе Kamo et al., о которой сообщается в «Diamond Synthesis from Gas Phase in Microwave Plasma», Journal of Crystal Growth, vol.62, pp.642-644, показано применение химического осаждения из газовой фазы, индуцированного микроволновой плазмой (MPCVD), для получения алмаза при давлениях 1-8 кПа в пределах температур 800-1000°C с микроволновой мощностью 300-700 Вт при частоте 2,45 ГГц. В указанном способе Kamo et al. использовали концентрацию газа метана 1-3%. В случае использования способа MPCVD сообщалось о максимальных скоростях роста 3 мкм/час.

В рассмотренных выше способах и в целом ряде недавно разработанных способов трещиностойкость алмазов в некоторых случаях лучше, чем у природных алмазов. В частности, в способах при более высоких скоростях роста, в которых только получают или выращивают поликристаллические формы алмаза, известно получение алмаза, обладающего трещиностойкостью, лучшей, чем у природных алмазов. За исключением некоторых синтетических алмазов, полученных в условиях высоких температур и высоких давлений (HPHT), которые подвергали отжигу, большинство алмазов обладают трещиностойкостью менее 11 МПа·м1/2 .

Сущность изобретения

Таким образом, настоящее изобретение относится к устройству и способу получения алмаза, который, по существу, устраняет одну или несколько проблем, обусловленных ограничениями и недостатками предшествующего уровня техники.

Целью настоящего изобретения является устройство и способ получения алмаза в системе для химического осаждения из газовой фазы, индуцированного микроволновой плазмой, который обладает повышенной трещиностойкостью.

Дополнительные особенности и преимущества изобретения будут изложены в приведенном ниже описании и частично будут понятны из описания или могут быть изучены при практическом осуществлении изобретения. Указанные цели и другие преимущества данного изобретения будут реализованы и достигнуты с помощью системы, в частности, указанной в описании и в формуле изобретения, а также прилагаемых чертежей.

Для достижения указанных и других преимуществ и в соответствии с целью настоящего изобретения, которое осуществлено и подробно описано, монокристаллический алмаз, выращенный с помощью химического осаждения из газовой фазы, индуцированного микроволновой плазмой, обладает твердостью 50-90 ГПа и трещиностойкостью 15-20 МПа·м 1/2.

В другом варианте осуществления монокристаллический алмаз обладает трещиностойкостью 18-20 МПа·м 1/2.

В соответствии с другим вариантом осуществления настоящего изобретения способ выращивания монокристаллического алмаза включает размещение затравочного алмаза в держателе и выращивание монокристаллического алмаза при температуре от примерно 1000°C до примерно 1100°C так, что монокристаллический алмаз обладает трещиностойкостью 11-20 МПа·м 1/2.

Следует понимать, что как предшествующее общее описание, так и последующее подробное описание являются иллюстративными и пояснительными и предназначены для дальнейшего разъяснения заявленного изобретения.

Краткое описание чертежей

Сопровождающие чертежи, которые включены для обеспечения дальнейшего понимания изобретения и которые включены в данное описание и составляют его часть, иллюстрируют варианты осуществления изобретения и вместе с описанием служат для объяснения принципов изобретения.

Фиг.1 является схематическим изображением индентора для испытания твердости и трещиностойкости алмаза.

Фиг.2 является изображением углубления, сделанного на CVD-выращенном в индуцированной микроволновой плазме монокристаллическом алмазе.

Фиг.3 является диаграммой, показывающей твердость и твердость CVD-выращенных в индуцированной микроволновой плазме монокристаллических алмазов по сравнению с природными алмазами типа IIa.

Фиг.4 является диаграммой, показывающей твердость и твердость CVD-выращенных в индуцированной микроволновой плазме монокристаллических алмазов, которые были получены при различных температурах, по сравнению с природными алмазами типа IIa.

Подробное описание предпочтительных вариантов

Теперь будет сделана ссылка на подробное описание предпочтительных вариантов осуществления настоящего изобретения, результаты которого проиллюстрированы в прилагаемых чертежах.

CVD-выращенный в индуцированной микроволновой плазме монокристаллический алмаз, относящийся к данной заявке, был выращен с использованием устройства, описанного в патентной заявке №10/288499, поданной 6 ноября 2002 г. под названием «Apparatus and Method for Diamond Production», которая включена в данное описание в виде ссылки. В общем случае, затравку алмаза помещают в держателе, который перемещает затравку алмаза/растущий алмаз, по мере того как алмаз выращивают. Авторы данной заявки также являются авторами патентной заявки США №10/288499.

CVD-выращенный в индуцированной микроволновой плазме монокристаллический алмаз c толщиной более 1 миллиметра был осажден на гранях {100} синтетического алмаза типа Ib. Для увеличения скорости роста (50-150 мкм/час) и активации процесса сглаживания роста грани {100} монокристаллические алмазы выращивали в атмосфере N2/CH 4=0,2-5,0% и CH4/H 2=12-20% при суммарном давлении 120-220 торр и 900-1500°C из микроволновой индуцированной плазмы в камере CVD. Спектры комбинационного рассеяния показали наличие небольшого количества гидрогенизированного аморфного углерода (a-C:H) 4 и азотсодержащего a-C:H(N:a-C:H)4 , приводящего к коричневому алмазу при <950°C и >1400°C. Спектр фотолюминесценции (СФ) указывал на примеси, связанные с вакансией азота (N-V). Монокристаллические алмазы толщиной до 4,5 мм были получены при скоростях роста, которые по величине были на два порядка выше, чем в способах обычного поликристаллического CVD-роста.

Фиг.1 является схематическим изображением индентора для испытания твердости и трещиноустойчивости алмаза. Определение твердости по Виккерсу и трещиноустойчивости выполняли на отожженных CVD-выращенных в индуцированной микроволновой плазме монокристаллических алмазах на инденторе 1, показанном на фиг.1. Индентор 1 на фиг.1 содержит вдавливающее вещество 2, помещенное на держателе 3. Вдавливающее вещество 2 может быть карбидом кремния, алмазом или некоторым другим твердым веществом. Вдавливающее вещество имеет грани пирамидальной формы, соответствующие индентору по Виккерсу, в котором стороны пирамидальной формы, соответствующие индентору по Виккерсу, образуют угол 136°.

Индентор прикладывает точечный груз к испытываемому алмазу 2 до тех пор, пока не образуется углубление или трещина в испытываемом алмазе 2. Чтобы предотвращать упругую деформацию индентора, грузы варьируют от 1 до 3 кг на гранях {100} в направлении <100> испытываемых алмазов. Фиг.2 является изображением углубления, сделанного на CVD-выращенном индуцированным микроволновой плазмой монокристаллическом алмазе. Размеры углубления и трещин, связанных с углублением, измеряют с помощью оптической микроскопии.

Измеряя длину D и высоту h углубления, твердость Hv испытываемого алмаза может быть определена из следующего уравнения (1):

твердые алмазы и способы их получения, патент № 2325323

где P означает максимальный груз, используемый в инденторе для образования углубления в испытываемом алмазе, D означает протяженность самой длинной трещины, образовавшейся под воздействием индентора в испытываемом алмазе, и h означает глубину углубления в испытываемом алмазе, как показано на фиг.1.

Трещиностойкость Kc испытываемого алмаза может быть определена, используя твердость Hv из уравнения (1) по следующему уравнению (2):

твердые алмазы и способы их получения, патент № 2325323

E является модулем Юнга, который принят равным 1000 ГПа. P означает максимальный груз, используемый в инденторе для образования углубления в испытываемом алмазе. Значение d означает среднюю длину впадины углубления в испытываемом алмазе, как показано на фиг.2, такой что d=(dl+d 2)/2. Значение c означает среднюю длину радиальных трещин в испытываемом алмазе, как показано на фиг.2, такую что c=(c l+c2)/2.

Фиг.3 является диаграммой, показывающей твердость и твердость CVD-выращенных в индуцированной микроволновой плазме монокристаллических алмазов по сравнению с природными алмазами типа IIa. CVD-выращенные в индуцированной микроволновой плазме монокристаллические алмазы выращены при температурах примерно 1300°С для достижения высоких скоростей роста. Как показано на фиг.3, CVD-выращенные в индуцированной микроволновой плазме монокристаллические алмазы обладают намного более высокой трещиноустойчивостью 6-18 МПа·м 1/2, чем природный алмаз типа IIa. Большинство CVD-выращенных в индуцированной микроволновой плазме монокристаллических алмазов обладают намного более высокой трещиноустойчивостью по сравнению с отмеченной областью значений трещиноустойчивости для природного алмаза типа IIa, показанной в виде выделенного точками прямоугольника 10 на фиг.3 и отмеченной областью значений трещиноустойчивости для поликристаллических CVD-алмазов, показанной в виде выделенного точками прямоугольника 20 на фиг.3. CVD-выращенные в индуцированной микроволновой плазме монокристаллические алмазы, представленные на фиг.3, обладают трещиностойкостью 11-18 МПа·м 1/2 и твердостью 50-90 ГПа.

Как установлено, представленные на фиг.3 различия в трещиноустойчивости CVD-выращенных в индуцированной микроволновой плазме монокристаллических алмазов до некоторой степени коррелируют с температурой обработки. Соответственно, авторы настоящего изобретения вырастили дополнительные, CVD-выращенные в индуцированной микроволновой плазме, монокристаллические алмазы в пределах определенных диапазонов температуры обработки. Другими словами, затравку алмаза помещали в держателе и осуществляли рост монокристаллического алмаза в пределах определенных диапазонов температуры обработки. Эти дополнительные CVD-выращенные в индуцированной микроволновой плазме монокристаллические алмазы затем были подвергнуты той же самой проверке на твердость и трещиноустойчивость.

Фиг.4 является диаграммой, показывающей твердость и твердость CVD-выращенных в индуцированной микроволновой плазме монокристаллических алмазов, которые были получены при различных температурах, по сравнению с природными алмазами типа IIa. Более конкретно, на фиг.4 показана твердость и твердость CVD-выращенных в индуцированной микроволновой плазме монокристаллических алмазов, которые соответственно были получены при температурах свыше 1300°С, при 1150-1250°С и 1000-1100°С. Как показано на фиг.4, CVD-выращенные в индуцированной микроволновой плазме монокристаллические алмазы при 1000-1100°С обладают трещиностойкостью примерно 18-20 МПа·м 1/2 и твердостью 60-70 ГПа.

Хотя скорость роста монокристаллических алмазов была снижена, монокристаллические алмазы, выращенные при 1000-1100°С, могут быть получены с высокой трещиностойкостью 18-20 МПа·м1/2. Неизвестны другие синтетические или природные алмазы, которые обладают такой высокой трещиностойкостью. Кроме того, алмазы, выросшие при более высоких температурах, таких как 1150-1350°С, могут не обязательно достигнуть высокой трещиностойкости, но для них наблюдается тенденция обладать высокой твердостью, которая делает такие алмазы полезными для других целей.

Поскольку настоящее изобретение может быть осуществлено в нескольких формах неотступления от сути или его существенных признаков, следует также понимать, что описанные выше варианты не ограничены никакими подробностями приведенного выше описания, если не оговорено особо, и их следует толковать широко в пределах его сущности и объема, которые определены в прилагаемой формуле изобретения, и поэтому подразумевается, что все изменения и модификации, которые входят в пределы объема формулы изобретения или эквивалентны такому объему, включены в прилагаемую формулу изобретения.

Класс C01B31/06 алмаз 

способ получения сверхтвердого композиционного материала -  патент 2523477 (20.07.2014)
способ определения угла разориентированности кристаллитов алмаза в композите алмаза -  патент 2522596 (20.07.2014)
поликристаллический алмаз -  патент 2522028 (10.07.2014)
способ получения наноалмазов при пиролизе метана в электрическом поле -  патент 2521581 (27.06.2014)
устройство для получения алмазов -  патент 2514869 (10.05.2014)
способ селективной доочистки наноалмаза -  патент 2506095 (10.02.2014)
способ избирательного дробления алмазов -  патент 2492138 (10.09.2013)
способ получения сверхтвердого композиционного материала -  патент 2491987 (10.09.2013)
способ получения алмазов с полупроводниковыми свойствами -  патент 2484189 (10.06.2013)
способ получения синтетических алмазов и установка для осуществления способа -  патент 2484016 (10.06.2013)

Класс C30B29/04 алмаз

поликристаллический алмаз -  патент 2522028 (10.07.2014)
монокристаллический алмазный материал -  патент 2519104 (10.06.2014)
способ получения алмазоподобных покрытий комбинированным лазерным воздействием -  патент 2516632 (20.05.2014)
синтетический cvd алмаз -  патент 2516574 (20.05.2014)
способ изготовления фантазийно окрашенного оранжевого монокристаллического cvd-алмаза и полученный продукт -  патент 2497981 (10.11.2013)
способ избирательного дробления алмазов -  патент 2492138 (10.09.2013)
способ получения пластины комбинированного поликристаллического и монокристаллического алмаза -  патент 2489532 (10.08.2013)
способ получения поликристаллического материала на основе кубического нитрида бора, содержащего алмазы -  патент 2484888 (20.06.2013)
способ получения алмазов с полупроводниковыми свойствами -  патент 2484189 (10.06.2013)
способ получения синтетических алмазов и установка для осуществления способа -  патент 2484016 (10.06.2013)

Класс C30B25/00 Выращивание монокристаллов путем химических реакций реакционноспособных газов, например химическим осаждением из паровой фазы

способ синтеза монокристаллических селенидов железа -  патент 2522591 (20.07.2014)
монокристаллический алмазный материал -  патент 2519104 (10.06.2014)
устройство для осаждения атомного слоя и способ загрузки устройства для осаждения атомного слоя -  патент 2518845 (10.06.2014)
синтетический cvd алмаз -  патент 2516574 (20.05.2014)
способ и устройство для реакторов осаждения -  патент 2502834 (27.12.2013)
гетероструктуры sic/si и diamond/sic/si, а также способы их синтеза -  патент 2499324 (20.11.2013)
аппарат для получения и способ получения поликристаллического кремния -  патент 2495164 (10.10.2013)
подложка для выращивания эпитаксиальных слоев арсенида галлия -  патент 2489533 (10.08.2013)
способ получения пластины комбинированного поликристаллического и монокристаллического алмаза -  патент 2489532 (10.08.2013)
монокристалл нитрида, способ его изготовления и используемая в нем подложка -  патент 2485221 (20.06.2013)
Наверх