полярографический датчик

Классы МПК:G01N27/48 использующие полярографию, те измерение изменений тока при медленных изменениях напряжения 
Автор(ы):,
Патентообладатель(и):Часовской Владимир Александрович (RU),
Часовской Александр Владимирович (RU)
Приоритеты:
подача заявки:
2003-11-12
публикация патента:

Изобретение может быть использовано в тех отраслях, где необходимо проведение полярографических исследований катионного состава электролитов, например, в химии, биологии, медицине. Датчик состоит из корпуса, выполненного в виде стакана с приливами с одной стороны, в которые вставлена пластмассовая крышка с заостренными бобышками. Электроды датчика из стеклоуглерода утоплены в вогнутое дно, обеспечивая вместе с крышкой постоянство измерительного объема. Такая конструкция полярографического датчика обеспечивает повышение точности результатов измерений катионного состава электролита за счет неизменности объема электролита, участвующего в измерениях. 4 ил. полярографический датчик, патент № 2315989

полярографический датчик, патент № 2315989 полярографический датчик, патент № 2315989 полярографический датчик, патент № 2315989 полярографический датчик, патент № 2315989

Формула изобретения

Полярографический датчик катионного состава электролитов, содержащий корпус, выполненный в виде стакана из диэлектрика с вогнутым дном, в которое вмонтированы два электрода из химически нейтрального материала, снабженные выводами, отличающийся тем, что сверху стакана в приливы корпуса вставлена откидывающаяся пластмассовая крышка с помощью заостренных бобышек, ограничивающая измерительный объем.

Описание изобретения к патенту

Изобретение относится к технике, предназначенной для полярографических исследований растворов, содержащих ионы исследуемых элементов. В частности, в медицине, при определении концентрации ионов калия или натрия в электролитах, выделяемых человеческим организмом (слюна, цервикальная слизь, слеза, носовые выделения), для косвенного определения момента гормональных выделений, например, эстрогенов, прогестерона при наступлении овуляции у женщин в менструальном цикле.

Из известных устройств для полярографических исследований катионного состава электролитов наиболее близким к настоящему изобретению по совокупности существенных признаков является устройство для определения периода овуляции [1], включающее устройство для исследования катионного состава электролитов, датчик которого представляет собой корпус из диэлектрика в виде стакана, в котором установлены два электрода из химически нейтральных материалов, снабженные выводами [2].

К недостаткам ближайшего аналога относится тот факт, что в процессе измерений на электроды наносится испытуемый электролит в неконтролируемом количестве. На электродах получаются капельки разных размеров (фиг.1), а значит, содержащие разное количество исследуемых ионов. Тогда, при пропускании тока через разный объем капельки, величина тока будет зависеть от размера капельки. В зависимости от количества нанесенного на датчик электролита будет меняться и диффузионный ток через датчик. В результате будет наблюдаться неповторяемость результатов и их дальнейшая оценка при обработке. Поэтому исследователю необходимо помещать на датчик одинаковое количество испытуемого электролита от измерения к измерению, что при массовом использовании разными исследователями достаточно проблематично.

В настоящем изобретении предлагается полярографический датчик катионного состава электролитов, содержащий корпус, выполненный в виде стакана из диэлектрика с вогнутым дном, в которое вмонтированы два электрода из химически нейтрального материала, снабженные выводами, отличающийся тем, что сверху стакана в приливы корпуса вставлена откидывающаяся пластмассовая крышка с помощью заостренных бобышек.

В соответствии с уравнением, приведенным в [3] величина диффузионного тока, возникающего при приложении к датчику определенного напряжения в большом объеме исследуемого электролита, составит:

полярографический датчик, патент № 2315989

где: А - площадь измерительного электрода, см 2;

С - концентрация реагирующего вещества, ммоль/литр;

n - валентность реагирующего вещества;

D - коэффициент диффузии, см2с-1;

F - число Фарадея=96493 Кл;

полярографический датчик, патент № 2315989 - толщина эффективного слоя, см.

Обозначая высоту капельки электролита через h (фиг.1), можно получить зависимость истинного диффузионного тока от ее величины

полярографический датчик, патент № 2315989

где h - высота капельки, см;

k - степенной коэффициент, зависящий от конструкции датчика, kполярографический датчик, патент № 2315989 1;

x=h/hmax.

Экспериментально установлено, что для конструкции датчика с вогнутым дном и планарно расположенными электродами степенной коэффициент для данного датчика составляет k=6,0. Тогда график изменения диффузионного тока от высоты капельки электролита будет иметь следующий вид (фиг.2).

Эффективность настоящего изобретения заключается в повышении точности исследования катионного состава электролитов в условиях минимального количества исследуемого материала и удобства обслуживания при многократном использовании датчика.

С точки зрения удобства обслуживания вогнутое дно обеспечивает хорошую протираемость электродов датчика и самого стакана после проведенных измерений, но только при условии, что высота стакана будет небольшой.

Из графика фиг.2 видно, что при высоте капельки электролита около 2 мм истинное значение диффузионного тока составляет 0,95 от максимального. Для сохранения стабильности показаний необходимо ограничить капельку по высоте путем введения в конструкцию датчика небольшой откидной крышки сверху стакана. Крышка выполнена из пластмассы и вставлена в приливы корпуса датчика заостренными бобышками. Конструкция корпуса датчика имеет вид, показанный на фиг.3 и 4.

Вследствие стабильности объема исследуемого электролита от измерения к измерению также будут стабильны и воспроизводимы результаты измерения диффузионного тока, не зависящие от оператора, помещающего на датчик капельки исследуемого материала.

На фиг.1 (а-е) показаны разнообразные формы капелек, образующихся на датчике в зависимости от количества электролита, помещенного на электроды датчика.

На фиг.2 показан график изменения диффузионного тока через датчик в зависимости от высоты капельки электролита h.

На фиг.3 и 4 показана конструкция датчика с откидывающейся крышкой и вогнутым дном испытательного объема.

На фиг.1: 1 - электролит; 2 - корпус датчика; 3 - электроды.

На фиг.4: 1 - стакан; 2 - подложка; 3 - электроды; 4 - крышка; 5 - выводы; 6 - электролит.

Литература

1. Алибеков Я.И., Беркенгейм М.Л., Часовской В.А. Способ определения периода овуляции и устройство для его осуществления. Патент RU №2128943 от 09.04.1998 г.

2. Часовской В.А., Беркенгейм М.Л., Часовской А.В. Датчик для полярографических измерений катионного состава электролитов. Патент RU №2193861 от 10.12.2002 г.

3. Делимарский Ю.К. Полярография на твердых электродах. 1971.

Класс G01N27/48 использующие полярографию, те измерение изменений тока при медленных изменениях напряжения 

способ количественного определения молочной кислоты методом вольтамперометрии на стеклоуглеродном электроде -  патент 2526821 (27.08.2014)
способ определения аскорбата лития в лекарственной форме методом вольтамперометрии -  патент 2510018 (20.03.2014)
способ определения аскорбата кальция в биологически активных добавках методом вольтамперометрии -  патент 2510017 (20.03.2014)
способ вольтамперометрического определения наночастиц fe2o3 на угольно-пастовом электроде -  патент 2508538 (27.02.2014)
способ определения рения кинетическим инверсионно-вольтамперометрическим методом в породах и рудах -  патент 2506580 (10.02.2014)
способ определения глутатиона в модельных водных растворах методом циклической вольтамперометрии на графитовом электроде, модифицированном коллоидными частицами золота -  патент 2506579 (10.02.2014)
способ определения родия в водных растворах методом инверсионной вольтамперометрии по пику селективного электроокисления меди из rhxcuy -  патент 2498290 (10.11.2013)
способ определения платины в рудах по пику селективного электроокисления сu из интерметаллического соединения ptxcuy методом инверсионной вольтамперометрии -  патент 2498289 (10.11.2013)
способ определения таллия в водных растворах методом хронопотенциометрии -  патент 2495411 (10.10.2013)
способ определения таллия в водных растворах и технологических сливах методом инверсионной вольтамперометрии -  патент 2494386 (27.09.2013)
Наверх