способ получения битума из кислого гудрона

Классы МПК:C10C3/04 продувкой и(или) окислением 
Автор(ы):,
Патентообладатель(и):Ярославский государственный технический университет (RU)
Приоритеты:
подача заявки:
2005-03-09
публикация патента:

Использование: нефтепереработка и нефтехимия. Сущность: проводят термоокисление нейтрализованного кислого гудрона кислородом воздуха при 90°С с применением катализатора окисления на основе гальваношлама. В процессе термоокисления дополнительно вводят акцептор радикалов - каптакс (меркаптобензтиазол) в количестве 0,5 мас. частей на 100 мас. частей кислого гудрона. Способ позволяет стабилизировать температуру размягчения получаемого продукта и избежать процесса коксования битумного вяжущего на стадии окисления. 2 табл.

Формула изобретения

Способ получения битума из кислого гудрона путем термоокисления нейтрализованного кислого гудрона кислородом воздуха при температуре 90°С с применением катализатора окисления на основе гальваношлама, отличающийся тем, что в процессе термоокисления кислого гудрона в качестве акцептора радикалов дополнительно вводится каптакс (меркаптобензтиазол) в количестве 0,5 мас.ч. на 100 мас.ч. кислого гудрона.

Описание изобретения к патенту

Изобретение относится к производству строительных материалов и может быть использовано для получения битумных вяжущих путем переработки отхода нефтемаслозаводов, образующегося при очистке дистиллятных масел концентрированной серной кислотой или олеумом. В настоящее время этот продукт, так называемый кислый гудрон (КГ), разной степени кислотности сбрасывают в пруды-накопители, где с течением времени происходит вымывание кислоты атмосферными осадками, а также выделение SO2 и SO3, в результате этого загрязняются водный и воздушный бассейны. Утилизация КГ решает важную задачу по созданию безотходного производства и охране окружающей среды.

Известен способ получения битума путем совместной переработки КГ с кислотным числом 12-30 мг КОН/г гудрона и прямогонного гудрона (10% КГ и 90% прямогонного гудрона) (А.С. СССР №165975, кл. С 10 С 3/04, 1964).

Наиболее близким по технической сущности к предлагаемому изобретению является способ получения битума путем термоокисления кислородом воздуха нейтрализованного кислого гудрона, с применением катализатора окисления на основе гальваношлама при температуре 90°С (Патент РФ №2215772, кл. С 10 С 3/04, 2003).

Он характеризуется достаточно высокой скоростью окисления, но при незначительном повышении температуры происходит коксование продукта, что, в свою очередь, затрудняет эксплуатацию оборудования. Данный процесс объясняется тем, что образовавшиеся в результате разрыва макромолекул битума макрорадикалы способны к процессам рекомбинации и взаимодействия, что ведет к получению продукта большей молекулярной массы. Для получения продукта с меньшей молекулярной массой необходимо устранить взаимодействие макрорадикалов, приводящее к увеличению средней молекулярной массы битума. Взаимодействие макрорадикалов между собой тем меньше, чем ниже температура и чем больше количество примесей, способных реагировать с образовавшимися макрорадикалами быстрее, чем они взаимодействуют между собой. К числу таких примесей, обусловливающих взаимодействие макрорадикалов, относится каптакс (меркаптобензтиозол). Задача изобретения - получение битума из КГ без коксования продукта в конце процесса. Поставленная задача решается путем термоокисления нейтрализованного кислого гудрона при температуре 90°С кислородом воздуха с применением катализатора окисления на основе гальваношлама (железосодержащий катализатор в виде мелкодисперсного порошка, получаемого при очистке воды и выделенного в устройствах очистки воздуха плавильных установок, вводится в дозировках от 0,9 до 10, 0 мас.% на исходный КГ). Состав железосодержащего катализатора приведен в таблице 1.

Таблица 1

Состав железосодержащего катализатора
Компоненты Содержание, мас.%
Fe 2(ОН)3, в пересчете на железо 30.20...76.00
Ni(OH) 20.15...0.89
Cu(OH)20.05...0.28
Cr(ОН)3 1.84...4.20
Zn(OH) 20.20...3.90
Са(ОН)20...20.93

Данный процесс от предложенного ранее отличается тем, что с целью замедления процесса коксования битума в процессе окисления вводят акцептор радикалов - каптакс (меркаптобензтиазол), взятый в количестве 0,5 мас. частей на 100 мас. частей КГ.

ПРИМЕР 1. В качестве исходного сырья используют КГ с кислотным числом 30-70 мг КОН/г гудрона, которой после нейтрализации гидроксидом кальция окисляют при 90°С в течение 1,5 часа и скорости подачи воздуха 1 л/кг гудрона в минуту.

ПРИМЕР 2. В качестве исходного сырья используют КГ с кислотным числом 30-70 мг КОН/г гудрона, которой после нейтрализации гидроксидом кальция окисляют при 90°С в течение 1,5 часа и скорости подачи воздуха 1 л/кг гудрона в минуту, количество добавляемого акцептора радикалов - каптакса - 0,5 мас. частей на 100 мас. частей КГ.

ПРИМЕР 3. В качестве исходного сырья используют КГ с кислотным числом 30-70 мг КОН/г гудрона, которой после нейтрализации гидроксидом кальция окисляют при 90°С в течение 1,5 часа и скорости подачи воздуха 1 л/кг гудрона в минуту, количество добавляемого акцептора радикалов - каптакса - 1,5 мас. частей на 100 мас. частей КГ.

В таблице 2 представлены полученные результаты, отслеживающим показателем была температура размягчения по КиШ.

Таблица 2

Показатели полученного битума с использованием акцептора радикалов и требования ГОСТ на кровельный битум (БНК 45/190. ГОСТ 9548-74)
Время окисления, чПример 1 (без каптакса) Пример 2

0,5.мас.частей. каптакса
Пример 3

1,5 мас. частей каптакса
БНК 45/190
Температура размягчения по КиШ, °С
1,0 час4241 33 
1,5 час4745 3540-50
2,0 часкокс46 38 
2,5 часкокс47 39 

Таким образом, применение 0,5 мас. частей каптакса (меркаптобензтиазол) на 100 мас. частей КГ в качестве акцептора радикалов позволяет стабилизировать температуру размягчения на стадии окисления кислого гудрона в битум без коксования получаемого продукта, как видно из полученных данных, применение большего количества акцептора радикалов ведет к неоправданному замедлению процесса окисления, что, в свою очередь, увеличивает энергозатраты на процесс.

Класс C10C3/04 продувкой и(или) окислением 

способ получения изотропного пекового полукокса -  патент 2520455 (27.06.2014)
способ получения пека-связующего для электродных материалов -  патент 2517502 (27.05.2014)
способ получения битума из нефтесодержащих отходов -  патент 2515471 (10.05.2014)
установка для получения олигомерного наноструктурированного битума -  патент 2509797 (20.03.2014)
способ получения олигомерного битума -  патент 2509796 (20.03.2014)
устройство для получения битума -  патент 2499813 (27.11.2013)
сульфоаддукт нанокластеров углерода и способ его получения -  патент 2478117 (27.03.2013)
способ получения битума -  патент 2476580 (27.02.2013)
газожидкостный реактор для получения окисленных нефтяных битумов -  патент 2471546 (10.01.2013)
способ получения битума -  патент 2458965 (20.08.2012)
Наверх