тепловая труба

Классы МПК:F28D15/02 в которых теплоноситель конденсируется и испаряется, например тепловые трубы
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Научно-производственное объединение прикладной механики им. акад. М.Ф. Решетнева" (RU)
Приоритеты:
подача заявки:
2003-07-24
публикация патента:

Изобретение предназначено для теплопередачи и теплорегулирования и может быть использовано в теплотехнике. Тепловая труба содержит связанные паропроводом и конденсатопроводом испаритель, имеющий капиллярно-пористую насадку, и конденсатор. Насадка выполнена из электроизоляционного материала, например керамики, а с внутренней стороны насадки установлен сетчатый электрод, связанный со стержневым электродом, установленным в герметичном изоляторе на торцевой части испарителя. Изобретение обеспечивает увеличение тепловой мощности и длины тепловой трубы, регулирование тепловой мощности. 1 ил.

тепловая труба, патент № 2256862

тепловая труба, патент № 2256862

Формула изобретения

Тепловая труба, содержащая связанные паропроводом и конденсатопроводом испаритель, имеющий капиллярно-пористую насадку, и конденсатор, отличающаяся тем, что насадка выполнена из электроизоляционного материала, например керамики, а с внутренней стороны насадки установлен сетчатый электрод, связанный со стержневым электродом, установленным в герметичном изоляторе на торцевой части испарителя.

Описание изобретения к патенту

Изобретение относится к области теплотехники и может быть использовано в устройствах теплопередачи и теплорегулирования.

В последнее время во многих странах разрабатываются так называемые тепловые трубы (ТТ), которые являются эффективно действующими теплоотводами. Известно, что в тепловых трубах имеет место, главным образом, не обычная теплопроводность, которая относительно мала, а гидравлический перенос тепла при двух противоположных друг другу фазовых превращениях. Насосом, который обеспечивает циркуляцию как жидкого, так и парообразного теплоносителя, является фитиль, от его геометрических, теплофизических и гидравлических характеристик зависит теплопередающая способность тепловой трубы. Сюда, в первую очередь, следует отнести такие параметры, как теплопроводность каркаса фитиля, его пористость, распределение пор по радиусам, проницаемость для рабочей жидкости. Эта способность не в меньшей степени зависит от характеристик и самого теплоносителя: давления насыщенного пара, теплоты испарения, вязкости, плотности жидкости и пара, теплопроводности, поверхностного натяжения, смачивания им твердых стенок капиллярных каналов фитиля. Все эти параметры зависят от температуры и изменяются вместе с тепловой нагрузкой на тепловую трубу.

Основное (гидравлическое) уравнение тепловой трубы без учета изменения количества движения и гравитационного воздействия на течение пара ввиду его малой плотности, может быть представлено в виде:

тепловая труба, патент № 2256862 PMAXтепловая труба, патент № 2256862 тепловая труба, патент № 2256862 Pg+тепловая труба, патент № 2256862 Pж+тепловая труба, патент № 2256862 Pп (1),

где тепловая труба, патент № 2256862 Pmax - максимальный капиллярный напор (абсолютная величина разности капиллярных давлений), которую может создавать фитиль данной тепловой трубы на данном теплоносителе при данной температуре, тепловая труба, патент № 2256862 Pg - разность гидростатических давлений жидкости в порах фитиля между концами тепловой трубы, тепловая труба, патент № 2256862 Рж - гидравлическое сопротивление (потери на трение) при движении жидкости по фитилю, тепловая труба, патент № 2256862 Рп - гидравлическое сопротивление при движении пара в паровом канале.

В стационарно работающей тепловой трубе всегда сумма потерь давлений равна разности капиллярных давлений тепловая труба, патент № 2256862 Р, которая обязательно в данном случае и создает фитиль, то есть:

тепловая труба, патент № 2256862 P=тепловая труба, патент № 2256862 Pg+тепловая труба, патент № 2256862 Pж+тепловая труба, патент № 2256862 Pп. (2)

При увеличении тепловой нагрузки на тепловую трубу температура повышается, сила поверхностного натяжения, а следовательно, и тепловая труба, патент № 2256862 Pmax уменьшаются, а потери по пару и жидкости тепловая труба, патент № 2256862 Р при этом возрастают и стремятся к своему максимальному значению тепловая труба, патент № 2256862 Pmax. Когда тепловая труба, патент № 2256862 Р=тепловая труба, патент № 2256862 Рmах, дальнейшее увеличение нагрузки становится невозможным.

Значительное увеличение длины классической тепловой трубы даже при работе в горизонтальном положении наталкивается на определенные трудности, связанные, с одной стороны, с увеличением потерь как по пару, так и по жидкости, что снижает предельную мощность, а с другой - с изготовлением и монтажом длинных фитилей, особенно в том случае, если тепловая труба имеет изгибы корпуса.

Для увеличения длины классической тепловой трубы и снижения гидравлического сопротивления используют тепловые трубы с раздельными каналами пара и жидкости и локализованной пористой структурой, выполняющей роль капиллярного насоса. Конструкция такой трубы описана в авторском свидетельстве №1196665, которая выбрана в качестве прототипа.

Однако и в этой конструкции сохраняются недостатки, присущие тепловым трубам с пористыми капиллярными насосами, а именно:

- тепловая мощность и длина трубы ограничены максимальной величиной капиллярного напора тепловая труба, патент № 2256862 Рmах;

- величина капиллярного напора существенно зависит от смачиваемости поверхности пористой структуры и сил поверхностного натяжения, что создает значительные трудности при изготовлении, при подготовке поверхности и выборе и подготовке теплоносителя;

- отсутствует возможность регулирования тепловой мощности.

Предлагаемая конструкция позволяет избежать указанных недостатков путем введения в конструкцию электрокинетического насоса. Конструкция электрокинетического насоса описана в J.F.Osterley, Electrokinetic Energy Conversion // Journal of Applied Mechanics. - June 1964. - pp 161-164. Такие насосы позволяют перекачивать жидкость через пористую структуру при приложении электрического поля. Оценки показывают, что при одинаковом размере пор электрокинетический насос позволяет получить в несколько раз больший перепад давления, чем капиллярный.

Поставленная задача решается тем, что тепловая труба содержит связанные паропроводом и конденсатопроводом испаритель, имеющий капиллярно-пористую насадку, и конденсатор, при этом насадка выполнена из электроизоляционного материала, например керамики, а с внутренней стороны насадки установлен сетчатый электрод, связанный со стержневым электродом, установленным в герметичном изоляторе на торцевой части испарителя.

Суть изобретения поясняется чертежом, где изображен общий вид предлагаемого устройства.

Тепловая труба с электрическим управлением тепловой мощностью содержит соединенные паропроводом 1 и конденсатопроводом 2 испаритель 3 с керамической, не проводящей электрический ток, капилярно-пористой насадкой 4, снабженной пароотводными каналами 5, и конденсатор 6, выполненный, например, в виде соосно установленных один в другом цилиндров с образованием кольцевой полости 7, причем пароотводные каналы 5 выполнены в виде кольцевых и продольных проточек, расположенных на наружной поверхности насадки 4 и сообщающихся с кольцевым паровым коллектором 8. На внутренней поверхности насадки расположен цилиндрический сетчатый электрод 9, электрически изолированный от корпуса испарителя 3 и присоединенный через герметичный изолятор 10 к электроду 11.

Тепловая труба работает следующим образом. При подводе тепловой нагрузки к испарителю 3 возникает разность температур и давлений между паром в пароотводных каналах 5 с одной стороны, и жидкостью в центральной полости насадки 4, с другой стороны. Под действием разности давлений теплоноситель вытесняется из кольцевой области 7 конденсатора 6 и заполняет свободную часть конденсатопровода 2 и центральный канал насадки 4. Теплоноситель, поступающий к насадке 4, движется в зону испарения преимущественно в радиальном направлении. Испарение его происходит с поверхности капиллярно-пористых элементов, плотно прилегающих к поверхности испарителя 3. Образующийся пар по кольцевым и продольным проточкам поступает в паровой коллектор 8, а из него по паропроводу 1 в конденсатор 6, где конденсируется и охлаждается до температуры приемника тепла. Под действием разности давлений образующийся конденсат возвращается в испаритель, замыкая рабочий цикл тепловой трубы.

При отсутствии электрического напряжения между корпусом трубы и электродом 11 работа тепловой трубы не отличается от описанной в прототипе. При подаче напряжения на электрод 11 электрокинетический насос, образованный корпусом испарителя 3, пористой насадкой 4 и сетчатым электродом 9, создает дополнительный перепад давления жидкости, который увеличивает имеющийся капиллярный напор. Увеличение суммарного напора жидкости позволяет увеличить длину и тепловую мощность трубы. Т.к. работа электрокинетического насоса не зависит от смачиваемости пористой насадки 4, требования к качеству ее изготовления и подготовки значительно снижаются. Кроме того, возможность изменения напряжения, подведенного к электроду 11, позволяет не только регулировать величину напора жидкости и тем самым тепловую мощность трубы, но и, изменяя полярность напряжения, добиться полного прекращения передачи тепловой мощности (режим запирания).

Таким образом, введение в конструкцию электрокинетического насоса позволяет:

- увеличить тепловую мощность и длину тепловой трубы;

- снизить требования к пористой насадке и подготовке теплоносителя;

- осуществить режим регулировки тепловой мощности и, тем самым, добиться достижения поставленной цели.

Из известных заявителю источников информации не обнаружена совокупность признаков, сходная с совокупностью признаков заявляемого объекта.

Класс F28D15/02 в которых теплоноситель конденсируется и испаряется, например тепловые трубы

тепловая труба с применением трубчатых оптоволоконных структур -  патент 2524480 (27.07.2014)
динамоэлектрическая машина -  патент 2524170 (27.07.2014)
способ и устройство для регулирования температуры и расхода текучей среды -  патент 2521737 (10.07.2014)
система охлаждения -  патент 2518982 (10.06.2014)
конденсатор -  патент 2505768 (27.01.2014)
система термостатирования оборудования космического объекта -  патент 2494933 (10.10.2013)
бесшумная теплотрубная система охлаждения -  патент 2489665 (10.08.2013)
радиатор отопления из тепловой трубы -  патент 2476802 (27.02.2013)
терморегулирующее устройство на базе контурной тепловой трубы -  патент 2474780 (10.02.2013)
теплообменный аппарат -  патент 2473856 (27.01.2013)
Наверх