аустенитная сталь

Классы МПК:C22C38/54 с бором
C22C38/58 с более 1,5 % марганца по массе
Автор(ы):, , , , , , ,
Патентообладатель(и):Открытое акционерное общество "Машиностроительный завод" (RU)
Приоритеты:
подача заявки:
2003-04-03
публикация патента:

Изобретение относится к металлургии, в частности к стали для атомной техники, предназначенной для изготовления оболочек тепловыделяющих элементов реакторов на быстрых нейтронах с жидкометаллическим теплоносителем. Заявлена аустенитная сталь, содержащая кормпоненты в следующем соотношении, мас.%: углерод - 0,05-0,08, кремний - 0,3-0,6, марганец - 1,0-2,0, сера - не более 0,012, фосфор - не более 0,020, хром - 15,5-17,0, никель - 14,0-15,5, молибден - 1,9-2,5, титан -0,2-0,5, ванадий - 0,1-0,3, бор - 0,002-0,005, азот - не более 0,02, кобальт - не более 0,02, алюминий - не более 0,1, магний - 0,0001-0,005, кальций - 0,0005-0,005, железо - остальное, при этом отношение содержания титана к содержанию углерода составляет не менее 4. Техническим результатом изобретения является снижение формоизменения оболочек тепловыделяющих элементов при радиационном облучении за счет повышения сопротивляемости распуханию при одновременном сохранении механических свойств и коррозионной стойкости в условиях повышенных температур, а также при сохранении технологичности. 3 з.п. ф-лы, 2 табл.

Формула изобретения

1. Аустенитная сталь, содержащая углерод, кремний, марганец, серу, фосфор, хром, никель, молибден, титан, ванадий, бор, азот, кобальт, алюминий, железо, отличающаяся тем, что дополнительно содержит магний и кальций при следующем соотношении компонентов, мас.%:

Углерод 0,05аустенитная сталь, патент № 22339060,08

Кремний 0,3аустенитная сталь, патент № 22339060,6

Марганец 1,0аустенитная сталь, патент № 22339062,0

Сера Не более 0,012

Фосфор Не более 0,020

Хром 15,5аустенитная сталь, патент № 223390617,0

Никель 14,0аустенитная сталь, патент № 223390615,5

Молибден 1,9аустенитная сталь, патент № 22339062,5

Титан 0,2аустенитная сталь, патент № 22339060,5

Ванадий 0,1аустенитная сталь, патент № 22339060,3

Бор 0,002аустенитная сталь, патент № 22339060,005

Азот Не более 0,02

Кобальт Не более 0,02

Алюминий Не более 0,1

Магний 0,0001аустенитная сталь, патент № 22339060,005

Кальций 0,0005-0,005

Железо Остальное

при этом отношение содержания титана к содержанию углерода составляет не менее 4.

2. Аустенитная сталь по п.1, отличающаяся тем, что дополнительно содержит, мас.%:

Медь Не более 0,03

Мышьяк Не более 0,003

Кислород Не более 0,01

Галлий и/или германий Не более 0,0002

Висмут, и/или свинец, и/или олово Не более 0,001

Лантан, и/или церий, и/или празеодим, и/или неодим, и/или скандий Не более 0,05

3. Аустенитная сталь по п.1, отличающаяся тем, что отношение содержания фосфора к содержанию бора составляет 3-7.

4. Аустенитная сталь по п.1 или 3, отличающаяся тем, что суммарное содержание серы, фосфора и бора составляет не более 0,04, мас.%.

Описание изобретения к патенту

Область техники, к которой относится изобретение

Изобретение относится к металлургии и атомной технике и предназначено для использования в качестве конструкционного материала для изготовления оболочек тепловыделяющих элементов реакторов на быстрых нейтронах с жидкометаллическим теплоносителем.

Уровень техники

К конструкционным материалам, которые эксплуатируются в активной зоне реакторов на быстрых нейтронах, предъявляются высокие требования по сопротивляемости радиационному распуханию, взаимодействию оболочки тепловыделяющего элемента с продуктами деления ядерного топлива, охрупчиванию при длительном и интенсивном облучении и коррозионной стойкости в жидкометаллическом теплоносителе - натрии. К таким материалам предъявляются также повышенные требования высокой пластичности, длительной прочности, низкой скорости ползучести при температуре до (700-850)аустенитная сталь, патент № 2233906С (в области горячих пятен на внутренней поверхности оболочки тепловыделяющего элемента), хорошей сопротивляемости малоцикловой усталости и термическим ударам, связанным с изменением условий охлаждения, высокой радиационной стойкости в потоке быстрых нейтронов. В наибольшей степени данным требованиям при использовании в качестве конструкционного материала для оболочек тепловыделяющих элементов реакторов на быстрых нейтронах отвечают аустенитные стали, которые получили наибольшее распространение в ядерной технике. Аустенитные стали обладают достаточно высокими механическими свойствами, как при высоких, так и при низких температурах. Эти стали обладают высокой пластичностью, а в технологическом отношении имеют удовлетворительные свойства: из них получают нужные профили; они свариваются.

Известна аустенитная сталь, применяемая для изготовления оболочек тепловыделяющих элементов, которая имеет следующий состав, мас.%: хром - (12,5-14,5), никель - (14,5-15,5), молибден - (1,5-2,5), марганец - (1,5-2,5), титан - (0,1-0,4), углерод - (0,02-0,08), кремний - (0,5-1,0), азот - аустенитная сталь, патент № 22339060,01, фосфор - (0,2-0,8), бор - (0,002-0,008), сера - (0,004-0,010), ниобий - (0,02-0,05), ванадий - (0,01-0,05), тантал - (0,005-0,020), алюминий - (0,02-0,05), медь - (0,01-0,04), кобальт - (0,02-0,05), мышьяк - аустенитная сталь, патент № 22339060,03, кислород - аустенитная сталь, патент № 22339060,01, цирконий - аустенитная сталь, патент № 22339060,01, железо - остальное, причем отношение содержания титана к сумме содержаний углерода и азота составляет от 4 до 6, а сумма фосфора, бора и серы - аустенитная сталь, патент № 22339060,03 (ЕР 0121630, С 22 С 38/58, 1984). Сталь позволяет достичь выгорания 10% т.а. и повреждающие дозы до 75-80 смещений на атом.

Недостатком данной стали является недостаточная сопротивляемость радиационному распуханию по критерию предельно допустимого формоизменения при повреждающих дозах свыше 90 смещений на атом, что не позволяет повысить выгорание ядерного топлива и, следовательно, технико-экономические показатели реактора на быстрых нейтронах в целом.

Известна также аустенитная сталь, содержащая следующие компоненты, мас.%: углерод - (0,05-0,09), хром - (15,0-16,5), никель - (18-25), молибден - (1,5-2,5), марганец - (1,5-2,0), ниобий - (0,1-0,4), бор - (0,001-0,005), кремний - (0,3-0,6), церий - 0,15 (расчетное), фосфор - (0,010-0,025), титан - (0,25-0,45), ванадий - (0,05-0,15), азот - аустенитная сталь, патент № 22339060,02, сера - аустенитная сталь, патент № 22339060,01, алюминий - аустенитная сталь, патент № 22339060,01, железо - остальное, при условии, что сумма содержаний бора и фосфора составляет не более 0,025, аотношение суммы содержаний титана, ванадия и ниобия к углероду составляет от 8 до 13 (RU 2068022, С 22 С 38/58, 1996). Повышенное содержание никеля обеспечивает устойчивую аустенитную структуру и дает возможность при легировании титаном, ванадием и ниобием повысить сопротивляемость радиационному распуханию при нейтронном облучении. Но увеличение содержания никеля существенно удорожает конструкционный материал.

Наиболее близкой по технической сущности и достигаемому результату к настоящему изобретению является аустенитная сталь, содержащая углерод, кремний, марганец, серу, фосфор, хром, никель, молибден, титан, ванадий, бор, азот, кобальт, алюминий, железо (US 4530719, С 22 С 38/40, 1985). Известная сталь имеет следующий состав основных компонентов, мас.%: углерод - (0,02-0,08), кремний - (0,5-1,0), марганец - (1,5-2,5), сера - (0,004-0,1), фосфор - (0,2-0,8), хром - (12,5-14,5), никель - (14,5-16,5), молибден - (1,5-2,5), титан - (0,1-0,4), ванадий - (0,2-0,5), бор - (0,002-0,008), азот - не более 0,01, кобальт - (0,02-0,05), алюминий - (0,02-0,05), железо - остальное.

Повышенное содержание кремния, фосфора, бора, марганца и алюминия в известной стали снижает сопротивляемость распуханию, а пониженное содержание хрома, титана и молибдена понижает сопротивляемость распуханию при высоких температурах.

Сущность изобретения

Задачей настоящего изобретения является разработка и создание аустенитной стали, обладающей улучшенными свойствами. В результате решения данной задачи возможно получение технических результатов, заключающихся в том, что при радиационном облучении снижается формоизменение оболочек тепловыделяющих элементов за счет повышения сопротивляемости распуханию при одновременном сохранении механических свойств и коррозионной стойкости в условиях повышенных температур, а также при сохранении технологичности.

Данные технические результаты достигаются тем, что аустенитная сталь, содержащая углерод, кремний, марганец, серу, фосфор, хром, никель, молибден, титан, ванадий, бор, азот, кобальт, алюминий, железо, дополнительно содержит магний и кальций при следующем соотношении компонентов, мас.%: углерод - (0,05-0,08), кремний - (0,3-0,6), марганец - (1,0-2,0), сера - не более 0,012, фосфор - не более 0,020, хром - (15,5-17,0), никель - (14,0-15,5), молибден - (1,9-2,5), титан - (0,2-0,5), ванадий - (0,1-0,3), бор - (0,002-0,005), азот - не более 0,02, кобальт - не более 0,02, алюминий - не более 0,1, магний - (0,0001-0,005), кальций - (0,0005-0,005), железо - остальное, при этом отношение содержания титана к содержанию углерода составляет не менее 4.

Отличительная особенность настоящего изобретения состоит в том, что в сталь введены магний и кальций. Дополнительное введение магния и кальция способствует снижению количества и размеров неметаллических включений, уменьшению размера зерна, более равномерному распределению по телу зерна карбидов и нитридов, снижению образования остроугольных включений, что уменьшает формоизменение оболочек при длительной эксплуатации.

Хром, кремний и молибден в заданных пределах обеспечивают коррозионную стойкость стали в агрессивных средах, а хром и кремний в заданных пределах обеспечивают жаростойкость при высоких температурах до 950аустенитная сталь, патент № 2233906С.

Марганец и кальций в заданных пределах вступают во взаимодействие в основном с серой (а кальций также с кислородом) с образованием дисперсных сульфидов (и оксидов), способствуя их более равномерному распределению в объеме стали.

Легирование молибденом в заданных пределах обеспечивает стали по настоящему изобретению высокий уровень прочности в сочетаний с достаточной пластичностью, а также уменьшает возможность образования фазы Лавеса, которая способствует в сложнолегированных сталях зарождению вакансионных пор и распуханию в активной зоне ядерного реактора.

Присутствие титана обеспечивает твердорастворное и карбонитридное упрочнение сплава по настоящему изобретению, который, выделяясь в теле зерен в виде карбонитридов титана, препятствует нежелательному выделению карбидов хрома на границе зерен.

Присутствие ванадия в заданных пределах оказывает модифицирующее воздействие при кристаллизации слитка.

Присутствие азота в заданных пределах стабилизирует аустенитная сталь, патент № 2233906-твердый раствор. Кроме того, азот частично расходуется на образование мелкодисперсных частиц нитридов алюминия и хрома. Присутствие бора в заданных пределах связано с пределом его растворимости при температурах нагрева слитка перед горячей обработкой и с возможностью дополнительной стабилизации упрочняющих фаз: карбидов хрома, карбонитридов титана и ниобия, в которые входит бор.

Кроме того, аустенитная сталь дополнительно содержит, мас.%: медь - не более 0,03, мышьяк - не более 0,003, кислород - не более 0,01, галлий и/или германий - не более 0,0002, висмут и/или свинец и/или олово - не более 0,001, лантан и/или церий и/или празеодим и/или неодим и/или скандий - не более 0,05.

Предпочтительно, чтобы отношение содержания фосфора к содержанию бора составляло от 3 до 7, а суммарное содержание серы, фосфора и бора - не более 0,04 мас.%.

Сведения, подтверждающие возможность осуществления изобретения

Основные этапы известной стандартной технологии производства трубной заготовки из стали по настоящему изобретению заключаются в следующем:

- выплавка стали в вакуумных индукционных печах (ВИ);

- вакуумно-дуговой переплав (ВДП) электродов;

- ковка слитков, полученных посредством ВДП на готовый размер.

1. Технология вакуумной индукционной выплавки стали по настоящему изобретению заключается в следующем.

Выплавку стали производят в 12-(6)-тонных тиглях вакуумных индукционных печей. В качестве шихтовых материалов используют чистые (свежие) шихтовые материалы и отходы собственной марки. В завалку задают Fe, Cr, Ni, Si, Al. После расплавления шихты и достижения заданной температуры нагрева металла проводят выдержку (рафинирование) металла в течение 10-20 мин. В период рафинирования металла (с целью снижения содержания газов и неметаллических включений) присаживают С, Mn, V, Ti, В и другие элементы: Ca,Mg, редкоземельные металлы (РЗМ).

После выдержки металл перемешивают в течение 1-3 мин. Далее измеряют температуру и отбирают пробу на марочный химический анализ. По окончании плавки металл разливают в изложницы для расходуемых электродов. Продолжительность охлаждения слитков в изложницах не менее 2 ч, в том числе в печи не менее 40 мин. Дальнейшее охлаждение на воздухе. Общая продолжительность плавки составляет от 2 ч 10 мин до 2 ч 40 мин.

2. Технология вакуумного дугового переплава стали по настоящему изобретению заключается в следующем.

Вакуумный дуговой переплав расходуемых электродов проводят в вакуумно-дуговых печах в кристаллизаторе аустенитная сталь, патент № 2233906 400 мм. Перед вакуумно-дуговым переплавом поверхность расходуемых электродов подвергают сплошной абразивной зачистке или обдирке на токарных станках.

Во время переплава осуществляют дополнительное охлаждение слитков гелием. Время переплава: 90-180 мин. Скорость переплава составляет 3-3,5 кг/мин. После выдержки в вакууме в течение 15 мин печь вскрывается, слитки выгружают и они охлаждаются на воздухе.

3. Ковка слитков ВДП стали по настоящему изобретению заключается в следующем.

Слитки стали после вакуумного дугового переплава размером аустенитная сталь, патент № 2233906400 мм обтачивают резцами или зачищаются абразивами до размера аустенитная сталь, патент № 2233906300 мм и передают на ковку на молота.

Ковка исходных слитков на черновую (до обдирки) трубную заготовку размерами аустенитная сталь, патент № 2233906 125 мм производится в два передела:

- ковка слитков на промежуточные квадратные заготовки размером 125-145 мм;

- ковка промежуточных квадратных заготовок на черновую трубную заготовку.

Нагрев слитков и заготовок осуществляют в методической печи до температуры (1160±20)аустенитная сталь, патент № 2233906С в течение 14-16 ч.

При ковке удаляют головную и донную части слитка до получения слитка номинальной массой 1000 кг.

После воздушного охлаждения черновая заготовка сечением аустенитная сталь, патент № 2233906 125 мм обтачивается на трубную аустенитная сталь, патент № 2233906 90.

Составы плавок стали по настоящему изобретению приведены в таблице 1.

аустенитная сталь, патент № 2233906

Радиационные свойства образцов стали по настоящему изобретению приведены в таблице 2.

аустенитная сталь, патент № 2233906

Примечание к таблице 2:

- с.н.а. - смещение на атом - характеристика величины повреждающей дозы при нейтронном облучении (степень повреждаемости материала);

- плавка 1 облучалась в виде трубчатых образцов в так называемой материаловедческой сборке в реакторе БН-350 (59 с.н.а.) и реакторе Б.Н-600 (108 с.н.а.);

- вакансионное распухание - отношение изменения объема материала после облучения (аустенитная сталь, патент № 2233906V) к объему материала до облучения;

- методики определения вакансионного распухания:

1. Методика определения вакансионного распухания сталей электронно-микроскопическим методом: "The Structure of Fast-reactor Irradiated Solution-treated Type AISI 316 Steel". P.J.Barton, B.J.Eyre, D.A.Stow. Journal of Nuclear Materials, №67 (1977), pp. 181-197.

2. Методика определения плотности (распухания) методом гидростатического взвешивания: "Дистанционное определение плотности материалов и массы образцов". Зарегистрирована в отраслевом каталоге методик под №240 и занесена в отраслевую базу данных по методикам под названием "БД МЕРИ".

3. Методика и система для измерения геометрических параметров облученных твэлов. Паспорт АСК 139.00.ПС.

Таким образом, аустенитная сталь по настоящему изобретению имеет химический состав, обладающий увеличенным сопротивлением распуханию (радиационной ползучести) в условиях эксплуатации в активной зоне ядерного реактора на быстрых нейтронах при сохранении других характеристик.

Класс C22C38/54 с бором

термостойкая аустенитная сталь, обладающая стойкостью к растрескиванию при снятии напряжений -  патент 2528606 (20.09.2014)
жаропрочная сталь мартенситного класса -  патент 2524465 (27.07.2014)
коррозионно-стойкая легированная нейтронно-поглощающая сталь для изготовления шестигранных чехловых труб для уплотненного хранения в бассейнах выдержки и транспортировки ядерного топлива -  патент 2519064 (10.06.2014)
малоактивируемая жаропрочная радиационностойкая сталь -  патент 2515716 (20.05.2014)
сталь арматурная термомеханически упрочненная для железобетонных конструкций -  патент 2506339 (10.02.2014)
сталь -  патент 2502822 (27.12.2013)
коррозионно-стойкая аустенитная сталь -  патент 2499075 (20.11.2013)
закаленная мартенситная сталь с низким содержанием кобальта, способ получения детали из этой стали и деталь, полученная этим способом -  патент 2497974 (10.11.2013)
высокопрочная хладостойкая свариваемая сталь -  патент 2495149 (10.10.2013)
высокотвердые, с высокой ударной вязкостью сплавы на основе железа и способы их изготовления -  патент 2481417 (10.05.2013)

Класс C22C38/58 с более 1,5 % марганца по массе

термостойкая аустенитная сталь, обладающая стойкостью к растрескиванию при снятии напряжений -  патент 2528606 (20.09.2014)
трубная сталь -  патент 2525874 (20.08.2014)
холоднодеформируемая сталь повышенной прочности и состоящее из нее плоское изделие -  патент 2524027 (27.07.2014)
листовая конструкционная нержавеющая сталь, обладающая превосходной коррозионной устойчивостью в сварном шве, и способ ее производства -  патент 2522065 (10.07.2014)
коррозионностойкая высокопрочная сталь -  патент 2519337 (10.06.2014)
способ получения металлоизделия с заданным структурным состоянием -  патент 2516213 (20.05.2014)
малоактивируемая жаропрочная радиационностойкая сталь -  патент 2515716 (20.05.2014)
сталь -  патент 2514901 (10.05.2014)
высокопрочная среднеуглеродистая комплекснолегированная сталь -  патент 2510424 (27.03.2014)
высокопрочная гальванизированная листовая сталь и способ ее изготовления -  патент 2510423 (27.03.2014)
Наверх