способ получения вещества в аморфном состоянии и макроскопических объемов
Классы МПК: | C30B11/02 без использования растворителей C30B28/04 из жидкостей C30B29/00 Монокристаллы или гомогенный поликристаллический материал с определенной структурой, отличающиеся материалом или формой |
Автор(ы): | Куденко Юрий Абрамович, Серебренников Владимир Леонидович |
Патентообладатель(и): | Куденко Юрий Абрамович, Серебренников Владимир Леонидович |
Приоритеты: |
подача заявки:
1991-09-20 публикация патента:
20.10.1995 |
Способ получения вещества в аморфном состоянии относится к химической технологии. Цель изобретения получить аморфное вещество в макроскопическом объеме. Сущность способа заключается в охлаждении расплава вещества, находящегося под высоким давлением, до температуры, при которой при атмосферном давлении оно находится в твердом кристаллическом состоянии, и последующем быстром по сравнению со временем, характерным для взятого вещества, сбросе давления до атмосферного. 4 ил.
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4
Формула изобретения
СПОСОБ ПОЛУЧЕНИЯ ВЕЩЕСТВА В АМОРФНОМ СОСТОЯНИИ И МАКРОСКОПИЧЕСКИХ ОБЪЕМОВ путем охлаждения вещества в виде жидкости, отличающийся тем, что перед охлаждением вещество сжимают, затем охлаждают до температуры кристаллизации при атмосферном давлении в области с отрицательной производной на P - T-диаграмме, после этого снижают давление с одновременным перемещением вещества в зону с температурой ниже температуры кристаллизации его в аморфном состоянии, при этом время снижения давления выбирают меньше временного интервала, необходимого для занятия молекулами вещества узлов возможной кристаллической решетки в состоянии к моменту снижения давления.Описание изобретения к патенту
Изобретение относится к химической технологии и может быть использовано при производстве аморфных материалов в макроскопическом объеме. Известны способы получения аморфных материалов [1] основной особенностью которых является получение образцов в виде тонких пленок и мелкодисперсных порошков, что связано с необходимостью высокой скорости охлаждения жидкофазных образцов (105-106)оС/c. Высокая скорость охлаждения жидкофазного образца обуславливает фиксацию его жидкофазной структуры, препятствует постановке молекул вещества в места возможной кристаллической решетки, т.е. обусловливает аморфизацию. Способ получения вещества в аморфном состоянии путем быстрого затвердевания его микрокапель в свободном полете выбран за прототип изобретения [2]Цель изобретения получение аморфного материала в макроскопическом объеме. Указанная цель достигается благодаря тому, что выбирают вещество, имеющее на Р-Т диаграмме область с отрицательной производной dP/dT (взятой вдоль кривой фазового перехода). Выбранное вещество в расплавленном состоянии резко охлаждают, но с целью получения аморфного вещества в макроскопическом объеме перед охлаждением вещество сжимают, затем охлаждают до температуры ниже температуры кристаллизации при атмосферном давлении, что соответствует достижению состояния находящегося в области Р-Т диаграммы с отрицательной производной, затем резко снижают давление за время характерное для выбранного вещества, с одновременным перемещением образца в зону с температурой ниже температуры кристаллизации аморфного материала. Начальное состояние для процесса охлаждения (точка С на фиг. 1) жидкофазного материала достигается благодаря тому, что:
выбирается вещество с определенной фазовой диаграммой, называемой водоподобной фазовой диаграммой, показанной на фиг. 1. Существенной особенностью ее является наличие участка (а-b, вдоль которого повышение давления вызывает понижение температуры фазового перехода;
перевод вещества в начальное состояние (точка С) из исходного (точка А) производится в следующем процессе: из А в В путем изотермического сжатия, после чего охлаждается изобарически до температуры Тн начальная температура. Температура Тн ниже То исходной температуры перехода при атмосферном давлении. В общем случае из состояния А и С можно перейти любым равновесным путем. Положение точки С должно быть как можно ближе к линии Р-Т диаграммы, однако так далеко, чтобы исключить спонтанный переход в твердое состояние. Эта близость определяется аппаратурной точностью поддержания температуры и давления. Вещество в состоянии точка С характеризуется значительным увеличением вязкости, и как следствие уменьшением скорости диффузии молекул по сравнению с исходным состоянием точки А. Переход из равновесного жидкофазного состояния в твердую фазу осуществляется неравновесным образом, путем уменьшения давления до исходного за время меньшее чем время перемещения молекул на межузельное расстояние (твердой фазы). Сброс давления нужно осуществить за время





R универсальная газовая постоянная, 8,3


Т абсолютная температура вещества в момент снижения давления, град. Процесс уменьшения давления сопровождается адиабатическим охлаждением вещества и жидкости передающей давление. Во время сброса давления образец перемещается в зону с температурой ниже температуры Тс кристаллизации аморфного вещества при атмосферном давлении. Полученное вещество является аморфным и существует при температуре Т < Тс как угодно долго. В качестве вещества брались образцы чистой воды и растворов в ней глюкозы и желатина, фазовые диаграммы которых подобны. П р и м е р 1. Специальный контейнер, содержащий 4 мл воды с добавкой 3% желатина и 10% глюкозы, помещали в быстроткрываемую камеру высокого давления (БОКВД), позволяющую реализовать описанный выше процесс для водных растворов желатины, глюкозы. Поднимаем давление в БОКВД до 2000 атм при температуре +22оС. Охлаждаем БОКВД в течение 60 мин до температуры -20оС при которой вода (ее указанные растворы) под давлением 2000 атм остаются в жидком состоянии. Сбрасываем давление за 10-3 с до атмосферного с одновременным перемещением (выстреливанием) контейнера с образцом в сосуд с жидким азотом. Полученные образцы исследовались на рентгено-структурной установке ДРОН-4 в диапазоне температур от -165оС до +5,5оС. Специальный контейнер был изготовлен из фторопласта и имел на поверхности кольцевые проточки, позволяющие расчленить его на отдельные части не вынимая из контейнера с жидким азотом. Небольшую часть, содержащую образец льда, помещали в низкотемпературную камеру установки ДРОН-4. На фиг. 2 приведена рентгенограмма обычного гексагонального льда N 1 при температуре 165оС; на фиг. 3 рентгенограмма аморфного льда (Н2О


Класс C30B11/02 без использования растворителей
способы получения сложного гидросульфатфосфата цезия состава cs5(hso4)2(h2po4)3 - патент 2481427 (10.05.2013) |
Класс C30B29/00 Монокристаллы или гомогенный поликристаллический материал с определенной структурой, отличающиеся материалом или формой