радиофотолюминесцентное стекло

Классы МПК:C03C3/17 содержащие алюминий или бериллий
Автор(ы):, , , ,
Патентообладатель(и):Вильчинская Наталия Николаевна,
Дмитрюк Александр Васильевич,
Перминов Александр Сергеевич,
Петровский Гурий Тимофеевич,
Саввина Ольга Чингисовна
Приоритеты:
подача заявки:
1987-03-16
публикация патента:

Сущность изобретения: радиофотолюминесцентное стекло для индивидуальной дозиметрии гамма-рентгеновского излучения содержит компоненты в следующих количествах, мас. P2O5 - 68,8-78,2, Al2O3 4,5-14,6; CaO 0,1-8,8% Na2O 4,1-21,6, Ag2O 0,05- 5,0 при условии Na2O/CaO>1,9.

Формула изобретения

РАДИОФОТОЛЮМИНЕСЦЕНТНОЕ СТЕКЛО для индивидуальной дозиметрии гамма-рентгеновского излучения, включающее P2O5, Al2O3, CaO, Na2O, Ag2O, отличающееся тем, что, с целью уменьшения времени созревания радиофотолюминесценции и значения начальной люминесценции, оно содержит указанные компоненты в следующих количествах, мас.

P2O5 68,8 78,2

Al2O3 4,5 14,6

CaO 0,1 8,8

Na2O 4,1 21,6

Ag2O 0,05 5,0

причем отношение Na2O / CaO > 1,9

Описание изобретения к патенту

Изобретение относится к составам радиофотолюминесцентных стекол, которые могут быть использованы для изготовления детекторов, предназначенных для индивидуальной повседневной и аварийной дозиметрии гамма-рентгеновского излучения.

Известны составы стекол, предназначенных для дозиметрии ионизирующих излучений [1]

Наиболее близким является стекло, содержащее, мас.

P2O5 69-76; Al2O 6-8; CaO 7-12, Na2O 7-13; Ag2O 0,5-5,0 [2]

Недостатками данного стекла являются большое время созревания радиофотолюминесценции 24 ч с момента облучения при концентрации Ag2O 5,0 мас. и 240 ч с момента облучения при концентрации Ag2O 0,5 мас. а также высокие значения начальной (додозовой) люминесценции 5-8 рад при концентрации Ag2O свыше 1 мас. что не удовлетворяет требованиям повседневного дозиметрического контроля.

Задачей изобретения является уменьшение времени созревания радиофотолюминесценций, а также уменьшение значений начальной (додозовой) люминесценции при сохранении высокой чувствительности к гамма-рентгеновскому излучению.

Достигается это тем, что стекло содержит P2O5, Al2O3, CaO, Na2O, Ag2O при условии Na2O/CaO>1,9 при следующем содержании компонентов, мас. P2O5 68,8-78,2 Al2O3 4,5-14,6 CaO 0,1-8,8 Na2O 4,1-21,6 Ag2O 0,05-5,0

Примеры граничных и промежуточных составов стекла, мас. приведены в табл. 1.

Стекла указанных составов получали путем варки в электрической печи с силитовыми нагревателями при варьировании температуры варки в пределах 900-1250оС в зависимости от состава стекла. Стекла отливали в железную форму в виде плитки. Отжиг производился в муфеле при варьировании температуры в пределах 280-400оС в зависимости от состава стекла с последующим инерционным охлаждением.

Дозиметрические свойства радиофотолюминесцентных стекол зависят от концентрации активатора, поэтому сравнение дозиметрических свойств различных стекол необходимо проводить при одинаковой концентрации активатора.

В табл. 2 приведены составы исследованных стекол с концентрацией активатора 1 мас. в табл. 3 дозиметрические характеристики.

Зависимость дозиметрических свойств от концентрации активатора показана в табл. 4.

Использование стекол с запредельными значениями компонент приводит к значительному увеличению времени созревания радиофотолюминесценции, увеличению значений начальной (додозовой) люминесценции, а в некоторых случаях и к невозможности получения стекол из-за кристаллизации и низкой химической устойчивости.

Выводы иллюстрируются в табл. 5.

Таким образом, преимуществом данного стекла являются: уменьшение времени созревания радиофотолюминесценции в зависимости от состава стекла в 10 рад и более, значительное уменьшение значений начальной (додозовой) люминесценции, а также уменьшение содержания драгоценного металла серебра в 5-10 раз по сравнению с известным. Технология производства стекла и детекторов при этом не меняется.

Наверх