способ получения оксогидрохроменов
Классы МПК: | C07D311/20 с гидрированным гетероциклическим кольцом |
Автор(ы): | Маркова Л.И., Коробочкина Н.Г., Харченко В.Г. |
Патентообладатель(и): | Саратовский государственный университет им.Н.Г.Чернышевского |
Приоритеты: |
подача заявки:
1992-12-02 публикация патента:
27.09.1995 |
Использование: в химии гетероциклических веществ, в частности в способе получения оксогидрохроменов. Сущность изобретения: продукт оксогидрохромены общей ф-лы 1 где R1 атом водорода или C1-C6 R2 и R3 фенил, который может быть замещен C1-C6 алкоксигруппой. Реагент 1: 2-(3-оксопропил)-циклогексадион-1,3. Условия реакции: циклизацию реагента ведут при кипячении при Hh 14,0 18,0 Н в присутствии смеси серной и ледяной уксусной кислот в следующих количествах, мас. реагент I 14, ледяная уксусная кислота 84,5 85, и серная кислота 0,8 1,5. Это упрощает процесс при повышении выхода целевого продукта до 57,2 - 70% Структура ф-лы I

Формула изобретения
СПОСОБ ПОЛУЧЕНИЯ ОКСОГИДРОХРОМЕНОВ общей формулы
где R1 водород или С1-С6-алкил;
R2 и R3 фенил, незамещенный или замещенный С1-С6-алкоксигруппой,
гетероциклизацией соответствующего 2-(3-оксопропил)-циклогександиона-1,3 при кипячении в присутствии в качестве циклизующего агента ледяной уксусной кислоты, отличающийся тем, что процесс проводят при рН 14-18,0 Н, а в качестве циклизующего агента используют смесь серной и ледяной уксусной кислот в следующих количествах: на 14 мас. исходного 2-(3-оксопропил)- циклогександиона 1,3 84,5-85,2 мас. ледяной уксусной кислоты и 0,8-1,5 мас. серной кислоты.
Описание изобретения к патенту
Изобретение относится к органической химии, а именно к синтезу новых соединений, и может быть использовано в технологии их получения. Известен способ получения 5-оксо-5,6,7,8-тетрагидро-4Н-хроменов (Назаров И. Н и Завьялов С.И. Конденсация циклических


Недостатком данного способа является трудоемкость процесса, включающая длительную обработку реакционной смеси и невысокие выходы целевого продукта, составляющие 68%
Известен также способ получения 5-оксо-5,6,7,8-тетрагидро-4Н-хроменов (Завьялов С.И. Кондратьева Г.В. и Кудрявцева Л.Ф. О проведении нуклеофильных реакций дигидрорезорцина и его производных в малополярных растворителях. ЖОХ, 1961, т. 31, с. 3695-3700), включающий гетероциклизацию оксо-1,5-дикетонов ряда 2-(3-оксопропил)-циклогександиона-1,3 в кипящем толуоле в присутствии n-толуолсульфокислоты. Основным недостатком данного способа является низкий выход целевого продукта (39%) и продолжительная обработка реакционной смеси. Известен также способ получения 5-оксо-5,6,7,8-тетрагидро-4Н-хроменов (Харченко В. Г. Маркова Л.И. Казаринова Т.Д. и Юдович Л.М. О характере гетероциклизации трикетонов ряда 2-(3-оксопропил)-циклогексан-1,3-дионов. ХГС, 1985, N 7, с. 915-918), включающий гетероциклизацию оксо-1,5-дикетонов ряда 2-(3-оксопропил)-циклогександиона-1,3 в присутствии эфирата трехфтористого бора в среде ледяной уксусной кислоты.




Этот способ дает возможность получать 5-оксо-5,6,7,8-тетрагидро-4Н-хромены с хорошим выходом (70-72%) только в случае оксо-1,5-дикетонов, в молекуле которых R1 и R2 являются фенильными группами. Наличие в фенильных заместителях исходных оксо-1,5-дикетонов электронодонорных замещающих групп, в частности метоксильных (-OCH3) осложняет процесс образованием солей тетрафторборатов 5-оксо-5,6,7,8-тетрагидрохромилия III, выход которых составляет 7-8% и тем самым снижает выход целевого продукта, т.е. 5-оксо-5,6,7,8-тетрагидро-4Н-хроменов. Этот способ обладает еще одним существенным недостатком: он используют дорогостоящий эфират трехфтористого бора. Известен также способ получения 5-оксо-5,6,7,8-тетрагидро-4Н-хроменов (Харченко В. Г. Маркова Л.И. Смирнова Н.С. и др. Синтез и каталитическое гидрирование 5-оксотетрагидро-4Н-хроменов. ЖОрХ, 1982, т. 18, в. 10, с. 2184-2189), включающий гетероциклизацию оксо-1,5-дикетонов ряда 2-(3-оксопропил)-циклогександионов-1,3 в присутствии уксусного ангидрида


Этот метод дает возможность получать 5-оксо-5,6,7,8-тетрагидро-4Н-хромены с хорошими выходами (от 47 до 94%), однако применение этого способа ограничено по целому ряду причин: реакция проводится при температуре кипения уксусного ангидрида, равной 140оС. При этом наблюдается осмоление. Часто имеют место побочные процессы: ацилирование енольного гидроксила:



В некоторых случаях эта реакция становится основной, и получить 5-оксо-5,6,7,8-тетрагидро-4Н-хромен в этих условиях не удается. Имеет место ретромихаэлевский процесс, который особенно характерен для оксо-1,5-дикетонов, содержащих метоксифенильные заместители R1 и R2=C6H4-OCH3-4). Выход халконов составляет 5-7% что снижает выход целого продукта:



Наиболее близким к предлагаемому является способ получения 5-оксо-5,6,7,8-тетрагидро-4Н-хроменов (Харченко В.Г. Маркова Л.И. Смирнова Н.С. и др. ЖОрХ, 1982, т. 18, в. 10, с. 2184-2189), включающий гетероциклизацию оксо-1,5-дикетонов ряда 2-(3-оксопропил)-циклогександионов-1,3 при кипячении в ледяной уксусной кислоте.


Этот способ дает возможность получать 5-оксо-5,6,7,8-тетрагидро-4Н-хромены с выходами от 77 до 97%
Однако применение его в ряде случаев имеет существенный недостаток. Оксо-1,5-дикетоны, содержащие метоксифенильные заместители (R1 и R2=C6H4-OCH3-4) подвергаются в условиях данного процесса ретромихаэлевскому расщеплению, что существенно снижает выход целевого продукта.



Целью изобретения является упрощение процесса при повышении выхода целевых продуктов. Поставленная цель достигается тем, что способ получения оксогидрохроменов (1)

на 14 мас. исходного 2-(3-оксопропил)-циклогександиона-1,3
84,3-85,2 мас. ледяной уксусной кислоты и
0,8-1,5 мас. серной кислоты. Способ заключается в следующем. Исходный оксо-1,5-дикетон нагревают на кипящей водяной бане со смесью ледяной уксусной кислоты, содержащей каталитические количества серной кислоты. Добавление серной кислоты приводит к возрастанию кислотной среды, которая чаще всего составляет 16-17,5 Н. Процесс осуществляется в течение 5-10 мин, по охлаждении реакционной смеси образуется осадок целевого продукта. П р и м е р 1. 7,7-диметил-2,4-дифенил-5-оксо-5,6,7,8-тетрагидро-4Н-хромен. К 5 г (0,0143 М) оксо-1,5-дикетона-диметил-2-(1,3-дифенил-3-оксопропил)-циклогександиона-1,3 в 30 мл ледяной уксусной кислоты добавляют 2-3 капли серной кислоты (d=1,821), кислотность среды составляет 15-16 Н. Полученную смесь кипятят в течение 5 мин. Реакционную смесь охлаждают, выливают в стакан. Образовавшиеся кристаллы хромена отделяют, перекристаллизовывают из этанола. Выход продукта 4,2 г, что составляет 37,2% Тпл. 140-141оС. П р и м е р 2. 2,4-дифенил-5-оксо-5,6,7,8-тетрагидро-4Н-хромен. Процесс проводят аналогично примеру 1, исходя из 5 г (0,0156 М) оксо-1,5-дикетона-2-(1,3-дифенил-3-оксопропил)-циклогександиона-1,3. Время реакции 5 мин. Выход оксогидрохромена составляет 3,9 г (83%). Кислотность сред 15-16 Н. Тпл. 171-172оС. Оксогидрохромены: 7,7-диметил-2,4-дифенил-5-оксо-5,6,7,8-тетрагидро-4Н-хромен и 2,4-дифенил-5-оксо-5,6,7,8-тетрагидро-4Н-хромен идентифицированы по температуре плавления пробы смешения с образцами, полученными ранее [3]
П р и м е р 3. 7,7-диметил-2-фенил-4-(4-метоксифенил)-5-оксо-5,6,7,8-тетрагидро- 4Н-хромен. Процесс проводят аналогично примеру 1, исходя из 5 г (0,0137 М) оксо-1,5-дикетона-5,6-диметил-2-1-(4-метоксифенил)- (3-фенил-3)оксопропил-циклогександиона-1,3. Время реакции 4 мин. Выход 5-оксо-5,6,7,8-тетрагидро-4Н-хромена составляет 2,3 г (47%), рН среды 15-16 Н, Тпл 92-93оС. Найдено, C 79,97; 80,01; H 6,61; 6,41 (C24H24O3). Вычислено: C 79,97; H 6,71. ИК-спектр


Класс C07D311/20 с гидрированным гетероциклическим кольцом