шихта для получения кальцийвольфраматного рентгенолюминофора

Классы МПК:C09K11/68 хром, молибден или вольфрам
C09K11/55 содержащие бериллий, магний, щелочные или щелочноземельные металлы
Автор(ы):, , ,
Патентообладатель(и):Ставропольское арендное научно-производственное объединение "Люминофор"
Приоритеты:
подача заявки:
1990-10-26
публикация патента:

Сущность изобретения: шихта содержит следующие компоненты, мас.%: кальций хлористый 0,5 - 6; гексагидрат магния хлористого в расчете на безводную соль 0,1 - 5; очищенный вольфрамат кальция остальное. К очищенному вольфрамату кальция добавляют деминерализованную воду, раствор CaCl2 и раствор MgCl2. Полученную шихту сушат до состояния пыления и прокаливают на воздухе при 900°С 1 ч. Характеристики люминофора: относительная интенсивность 102 - 132% ; относительное послесвечение 14 - 99%; средний размер частиц 3,8 - 5,0 мкм. 1 табл.
Рисунок 1

Формула изобретения

ШИХТА ДЛЯ ПОЛУЧЕНИЯ КАЛЬЦИЙВОЛЬФРАМАТНОГО РЕНТГЕНОЛЮМИНОФОРА, включающая очищенный вольфрамат кальция, кальций хлористый и хлорид другого металла, отличающаяся тем, что, с целью повышения интенсивности рентгенолюминесценции, улучшения грансостава и уменьшения послесвечения рентгенолюминофора, она содержит в качестве хлорида металла гексагидрат магния хлористого при следующем соотношении компонентов, мас.

Кальций хлористый 0,5 6

Гексагидрат магния хлористого в расчете на безводную соль 0,1 5

Очищенный вольфрамат кальция Остальное

Описание изобретения к патенту

Изобретение относится к химической промышленности, а именно к производству рентгенолюминофоров для усиливающих рентгеновских экранов.

Основными параметрами усиливающих рентгеновских экранов являются чувствительность к рентгеновскому возбуждению, разрешающая способность и контрастность изображения. Эти параметры определяются люминесцентными и дисперсными свойствами люминофора.

Известен способ получения кальцийвольфраматного люминофора, включающий получение вольфрамата кальция осаждением из растворов хлористого кальция и вольфрамата аммония, отмывку осадка от аморфного вольфрамата кальция и смешивание с минерализатором кальцием хлористым [1]

Люминофор имеет высокую эффективность рентгенолюминесценции, но широкий спектр распределения частиц по размерам. Средний размер частиц 8-9 мкм.

Известно использование в качестве минерализаторов хлоридов щелочных металлов. Вольфрамат кальция по известному способу получают путем осаждения из щелочного раствора вольфрамовой кислоты и водного раствора кальция хлористого [2]

Средний размер частиц 6 мкм: < 3 мкм 0,5-1,0% 3-12 мкм 70-75% 12-18 мкм 15-20%

Использование большого количества минерализатора (7-50% к массе CaWO4) требует размола шихты перед прокалкой. В результате получаются неудовлетворительные результаты по интенсивности люминесценции и послесвечению.

Известно использование в шихте кальцийвольфраматного люминофора смеси минерализатора хлористого калия (KCl) с соединениями ванадия с целью уменьшения послесвечения [3] Однако при добавлении в шихту солей ванадия уменьшается эффективность рентгенолюминесценции порядка на 20-30% при введении соединений ванадия 5шихта для получения кальцийвольфраматного рентгенолюминофора, патент № 203489810-5-2шихта для получения кальцийвольфраматного рентгенолюминофора, патент № 203489810-4 г/г CaWO4.

Кроме того, наблюдается широкий спектр распределения частиц по размерам.

Наиболее близкой по качественно-количественному и достигаемому эффекту к изобретению является шихта кальцийвольфраматного рентгенолюминофора, включающая очищенный вольфрамат кальция 20% CaCl2шихта для получения кальцийвольфраматного рентгенолюминофора, патент № 2034898H2O и 1шихта для получения кальцийвольфраматного рентгенолюминофора, патент № 203489810-3-1шихта для получения кальцийвольфраматного рентгенолюминофора, патент № 203489810-1% к массе CaWO4 хлоридов щелочных металлов (NaCl, KCl, LiCl).

Большое количество кальция хлористого в шихте приводит к расплаву при прокалке, что затрудняет процесс выгрузки.

С увеличением содержания хлоридов металлов средний размер частиц уменьшается, а интенсивность люминесценции остается на прежнем уровне. Спектр распределения частиц сужается, но в недостаточной степени, остается большое количество частиц > 10 мкм.

Целью изобретения является повышение интенсивности рентгенолюминесценции, улучшение грансостава, уменьшение послесвечения люминофора.

Улучшение грансостава характеризуется сужением спектра распределения частиц по размерам, уменьшением среднего размера частиц до размеров, не превышающих 5 мкм.

Уменьшение послесвечения характеризуется величиной запасаемой светосуммы через 130 с.

Шихта для получения кальцийвольфраматного рентгенолюминофора по изобретению содержит очищенный вольфрамат кальция, кальций хлористый и гексагидрат магния хлористого при следующем соотношении этих компонентов, мас. Кальций хлористый 0,5-6,0

Гексагидрат магния

хлористого в расчете на безводную соль 0,1-5,0

Очищенный вольф- рамат кальция Остальное

Вольфрамат кальция получают осаждением из щелочного раствора вольфрамовой кислоты и раствора кальция хлористого. Исходные растворы предварительно очищают магнезиальной смесью, включающей MgCl2шихта для получения кальцийвольфраматного рентгенолюминофора, патент № 20348986H2O, NH4Cl и NH4OH. Осажденный вольфрамат кальция отмывают дистиллированной водой от маточного раствора до отрицательной реакции на содержание Cl-ионов в промывных водах. Содержание CaCl2 в отмытом CaWO4 не превышает 3шихта для получения кальцийвольфраматного рентгенолюминофора, патент № 203489810-6 мас. к массе CaWO4. Гексагидрат магния хлористого является минерализатором и регулирует рост кристаллов за счет образования на поверхности частиц вольфрамата кальция оксида магния в результате термического гидролиза.

При взаимодействии хлорида магния с собственной кристаллизационной водой образуется большое количество кислоты HCl, которая защищает шихту от кислорода, что способствует увеличению эффективности рентгенолюминесценции и уменьшению послесвечения.

Благодаря уменьшению содержания в шихте кальция хлористого продукт после термической обработки имеет порошкообразный вид, что упрощает процесс отмывки от плавней.

Сущность изобретения заключается в том, что готовят шихту, состоящую из очищенного вольфрамата кальция, кальция хлористого и гексагидрата магния хлористого в соответствии с указанным выше содержанием в шихте. Шихту сушат до состояния пыления, загружают в контейнер из кварца и прокаливают на воздухе при 700-900оС в течение 1,5-3 ч. Полученный люминофор имеет средний размер частиц не больше 5 мкм с узким распределением частиц по размерам и при достаточно высокой эффективности рентгенолюминесценции имеет малое послесвечение.

Изобретение иллюстрируется далее примерами. В качестве сравнения приведен также пример по прототипу.

П р и м е р 1 (по прототипу). К 100 г очищенного вольфрамата кальция добавляют 20 г CaCl2шихта для получения кальцийвольфраматного рентгенолюминофора, патент № 2034898H2O и 50 мл деминерализованной воды и 0,1 г NaCl в виде водного раствора. Смесь тщательно перемешивают и сушат. Полученную шихту загружают в тигель из кварца и прокаливают при 740оС в течение 4 ч. Полученный люминофор отгоняют горячей деминерализованной водой.

Интенсивность и послесвечение люминофора принято за 100% Средний размер частиц 9,3 мкм. Содержание частиц размером < 3 мкм 5% > 10 мкм 25%

П р и м е р 2. К 100 г очищенного вольфрамата кальция добавляют 50 мл деминерализованной воды, 6 мл раствора CaCl2 концентрации 332 г/л (2% CaCl2 к массе CaWO4) и 20 мл раствора MgCl2 концентрации 250 г/л (5% MgCl2 к весу CaWO4). Полученную шихту сушат при 120оС до состояния пыления, загружают в тигель из кварца, закрывают крышкой и прокаливают на воздухе при 900оС в течение 1 ч.

Охлажденный люминофор отмывают водой и сушат при 120оС. Относительная интенсивность рентгенолюминесценции 125% послесвечения 50% Дополнительные примеры приведены в таблице.

При увеличении концентрации кальция хлористого выше 6 мас. шихта не рассыпается и для ее загрузки для прокалки в контейнер необходим размол. Люминофор, полученный из такой шихты, имеет достаточно высокую эффективность рентгенолюминесценции, но и высокое послесвечение. Средний размер зерна больше 10 мкм, что не позволяет этот люминофор применять в рентгеновских экранах с высоким разряжением и контрастностью.

С уменьшением концентрации кальция хлористого эффективность рентгенолюминесценции уменьшается и при концентрации 0,4 мас. к массе вольфрамата кальция его интенсивность рентгенолюминесценции составляет 98%

Оптимальная концентрация кальция хлористого в шихте 0,5-6 мас. при которой эффективность рентгенолюминесценции составляет 102-132% от люминофора, полученного по прототипу.

Магний хлористый в результате гидролиза образует хлористый водород и оксид магния. Образующийся хлористый водород, как известно, способствует росту эффективности рентгенолюминесценции, а оксид магния препятствует росту кристаллов рентгенолюминофора. Все это позволяет получать кальций вольфраматный рентгенолюминофор с высокой эффективностью со средним размером частиц не больше 5 мкм. При концентрации хлористого магния меньше 0,05 мас. его действие практически незначительно и резко повышается как средний размер частиц, так и послесвечение. При концентрации хлористого магния выше 5 мас. интенсивность рентгенолюминесценции меньше 100%

Таким образом изобретение позволяет повысить эффективность рентгенолюминесценции на 2-32% снизить послесвечение до 14-27% Улучшение грансостава, заключающееся в уменьшении среднего размера частиц до 5 мкм и сужение спектра распределения частиц по размерам, позволяет повысить чувствительность экрана к рентгеновскому возбуждению, разрешающую способность и контрастность изображения усиливающих рентгеновских экранов.

Класс C09K11/68 хром, молибден или вольфрам

способ получения кальцийвольфраматного рентгенолюминофора -  патент 2209228 (27.07.2003)
самоактивированный люминофор с излучением в области 0,5 - 0, 7 мкм и способ его получения -  патент 2031918 (27.03.1995)
люминесцентное вещество -  патент 2024570 (15.12.1994)

Класс C09K11/55 содержащие бериллий, магний, щелочные или щелочноземельные металлы

люминофор белого свечения на основе двойного ванадата цезия цинка -  патент 2526078 (20.08.2014)
прозрачный тканеэквивалентный детектор излучений на основе li2b4o7 для термически или оптически стимулированной люминесцентной дозиметрии и способ его изготовления -  патент 2516655 (20.05.2014)
способ получения термолюминесцентных материалов -  патент 2502777 (27.12.2013)
легированный редкоземельным элементом люминофор на основе щелочноземельного элемента и нитрида кремния, способ его производства и преобразующее излучение устройство, содержащее такой люминофор -  патент 2470980 (27.12.2012)
двойной k-na-сульфат в качестве рабочего вещества термолюминесцентного детектора рентгеновского и гамма-излучения и способ его получения -  патент 2468060 (27.11.2012)
люминофор на основе двойного пированадата цезия -  патент 2458963 (20.08.2012)
наноразмерное анионо-дефектное вещество на основе оксида алюминия для люминесцентного дозиметра ионизирующих излучений -  патент 2424273 (20.07.2011)
люминесцентный наноструктурный композиционный керамический материал -  патент 2382810 (27.02.2010)
сложный силикат редкоземельных элементов и способ его получения -  патент 2379328 (20.01.2010)
способ получения термолюминофора -  патент 2098448 (10.12.1997)
Наверх