Электролитические конденсаторы, выпрямители, детекторы; переключающие устройства, светочувствительные или термочувствительные устройства; способы их изготовления – H01G 9/00

МПКРаздел HH01H01GH01G 9/00
Раздел H ЭЛЕКТРИЧЕСТВО
H01 Основные элементы электрического оборудования
H01G Конденсаторы; конденсаторы, выпрямители тока, детекторы, переключатели, светочувствительные или термочувствительные устройства электролитического типа
H01G 9/00 Электролитические конденсаторы, выпрямители, детекторы; переключающие устройства, светочувствительные или термочувствительные устройства; способы их изготовления

H01G 9/004 .конструктивные элементы
H01G 9/008 ..выводы
H01G 9/012 ...специально предназначенные для твердых конденсаторов
H01G 9/016 ...специально предназначенные для двухслойных конденсаторов
H01G 9/02 ..диафрагмы; сепараторы
H01G 9/022 ..электролиты, абсорбенты
аппаратура для электролитических процессов или электрофореза  C 25; первичные, вторичные или топливные элементы  H 01M
H01G 9/025 ...твердые электролиты
 9/038 имеет преимущество
H01G 9/028 ....органические полупроводниковые электролиты, например TCNQ
H01G 9/032 ....неорганические полупроводниковые электролиты, например MnO2
H01G 9/035 ...жидкие электролиты, например пропитывающие материалы
 9/038 имеет преимущество
H01G 9/038 ...электролиты, специально предназначенные для двухслойных конденсаторов
H01G 9/04 ..электроды
H01G 9/042 ...отличающиеся материалом
 9/058 имеет преимущество
H01G 9/045 ....с использованием в качестве основного материала алюминия
H01G 9/048 ...отличающиеся структурой
 9/058 имеет преимущество
H01G 9/052 ....электроды из спеченного материала
H01G 9/055 ....электроды из травленой фольги
H01G 9/058 ...специально предназначенные для двухслойных конденсаторов
H01G 9/06 ...крепление в сосудах (резервуарах)
H01G 9/07 ..диэлектрические прослойки
H01G 9/08 ..каркасы; герметизация, корпусирование
H01G 9/10 ...уплотнения, например вводных проводников
H01G 9/12 ...вентиляционные отверстия или другие средства, допускающие расширение
H01G 9/14 ..конструктивные комбинации для изменения или компенсации электрических характеристик электролитических конденсаторов
цепи с полным сопротивлением  H 03H
H01G 9/145 .конденсаторы с жидким электролитом
 9/155 имеет преимущество
H01G 9/15 .конденсаторы с твердым электролитом
 9/155 имеет преимущество
H01G 9/155 .двухслойные конденсаторы
H01G 9/16 .специально предназначенные для использования в качестве выпрямителей и детекторов
 9/22 имеет преимущество
H01G 9/18 .автоматические прерыватели 
H01G 9/20 .светочувствительные устройства 
H01G 9/21 .термочувствительные устройства
H01G 9/22 .приборы, использующие комбинированные восстановление и окисление, например восстановительно-окислительные приборы или электрохимические преобразователи типа солионов 
H01G 9/26 .конструктивные комбинации электролитических конденсаторов, выпрямителей, детекторов, переключающих, светочувствительных или термочувствительных устройств между собой
H01G 9/28 .конструктивные сочетания электролитических конденсаторов, выпрямителей, детекторов, переключающих устройств с другими электрическими компонентами, не отнесенными к данному подклассу

Патенты в данной категории

ПОЛИМЕРНЫЙ ПРОТОНПРОВОДЯЩИЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ

Настоящее изобретение относится к полимерным протонпроводящим композиционным материалам. Описан полимерный протонпроводящий композиционный материал, включающий полимерную линейную матрицу, представляющую собой водный 2-9% раствор поливинилового спирта, содержащий наночастицы серебра размером 20-100 нм в концентрации 40-100 мг/л и диспергированный в ней протонпроводящий твердый электролит в виде фосфорно-вольфрамовой кислоты и пластификатора в виде глицерина при следующем соотношении компонентов, мас.%: водный раствор поливинилового спирта 38-69, фосфорно-вольфрамовая кислота 19-50, глицерин остальное. Технический результат - полимерный протонпроводящий композиционный материал, обладающий высокой ионной проводимостью и максимально низкой электронной составляющей проводимости, обеспечивающий улучшение мощностных характеристик суперконденсаторов или других приборов твердотельной электроники, и увеличение длительности хранения их заряда. 2 табл., 13 пр.

2529187
выдан:
опубликован: 27.09.2014
ТВЕРДОТЕЛЬНЫЙ СУПЕРКОНДЕНСАТОР НА ОСНОВЕ МНОГОКОМПОНЕНТНЫХ ОКСИДОВ

Предложенное изобретение относится к области электротехники, а именно к твердотельным суперконденсаторам на основе многокомпонентных оксидов. Увеличение емкости и плотности запасаемой энергии и уменьшение токов утечки конденсатора является техническим результатом изобретения. Суперконденсатор содержит два электрода и размещенный между ними диэлектрический слой, при этом нижний электрод выполнен из материала с большой удельной площадью поверхности, диэлектрический слой конформно и однородно расположен на нижнем электроде, верхний электрод конформно и однородно расположен на диэлектрическом слое и выполнен из оксида цинка, легированного алюминием, при этом диэлектрический слой выполнен из многокомпонентного оксида, содержащего смесь по меньшей мере двух оксидов, выбранных из ряда TiO2, НfO3, ZrO2, Аl 2О3, Та2O5, Nb2 O5, Y2О3 и оксидов элементов из группы лантаноидов, и выполнен таким образом, что относительная диэлектрическая проницаемость активного диэлектрического слоя находится в интервале 10-30. Предложенный твердотельный конденсатор может найти применение в электромобилях, где может располагаться на внутренней поверхности кузова и служить идеальным источником питания в экстремальных условиях. 1 з.п. ф-лы, 3 ил., 5 пр.

2528010
выдан:
опубликован: 10.09.2014
ПЛЕНОЧНЫЙ КОНДЕНСАТОР

Предложенное изобретение относится к области электротехники, а именно к композитным пленочным электролитическим конденсаторам. Пленочный конденсатор содержит токосъемник - алюминиевую фольгу, поверхность которой через барьерный слой развита посредством электродного материала из губчатого вентильного металла, пропитанного электролитом. Новым является то, что электродный материал выполнен многослойным, каждый композитный слой которого представляет собой пленочную основу с рифлениями 50-100 нм из губчатого титана толщиной 50-100 мкм, несущую на поверхности локальные шипы из нанокластеров вентильного металла для электроконтакта в примыкании между собой, при этом, начиная со второго, слой губчатого титана выполнен со сквозными порами размером 0,3-5 мкм суммарным объемом не менее 10-15% объема слоя, при том, что конформный слой пористого титана с барьерным слоем на поверхности токосъемника связан гетеропереходом из композитных наночастиц, а барьерный слой на поверхности алюминиевой фольги выполнен из нитрида титана или алмазоподобного нанослоя из аморфного углерода -С:Н, которые связаны между собой посредством адгезионной прослойки, образованной противным распределением материалов примыкающих слоев, взаимно дополняющих друг друга по толщине. Повышение удельной емкости пленочного конденсатора является техническим результатом изобретения. 2 з.п. ф-лы, 3 ил.

2525825
выдан:
опубликован: 20.08.2014
СУПЕРКОНДЕНСАТОР

Изобретение относится к области электротехники и может быть использовано в приборах мобильной связи в качестве источника постоянного тока многократного использования. Предложенный суперконденсатор выполнен в виде тонкопленочной структуры, содержащей электроды, разделенные пленочным слоем твердого электролита, при этом, в качестве твердого электролита выбран диоксид циркония, стабилизированного иттрием, один из электродов представляет собой наночастицы графена, а второй проводящий полимер - полипиррол. Повышение удельной энергии конденсатора является техническим результатом изобретения. 1 ил.

2523425
выдан:
опубликован: 20.07.2014
НАНОСТРУКТУРНЫЙ ЭЛЕКТРОД ДЛЯ ПСЕВДОЕМКОСТНОГО НАКОПЛЕНИЯ ЭНЕРГИИ

Предложена нанопористая матричная структура, представляющая собой подложку из анодированного оксида алюминия (АОА), которую используют для создания псевдоконденсатора с высокой плотностью накапливаемой энергии. Псевдоемкостный материал конформно осаждают по боковым стенкам подложки АОА путем атомно-слоевого осаждения, химического осаждения из паровой фазы и/или электрохимического осаждения с использованием слоя зародышеобразования. Толщина псевдоемкостного материала на стенках может точно регулироваться в процессе осаждения. АОА подвергают травлению, чтобы сформировать массив цилиндрических и структурно устойчивых нанотрубок из псевдоемкостного материала с выполненными в них полостями. Поскольку подложку из АОА, которая действует как несущий каркас, удаляют, и остается только активный псевдоемкостный материал, тем самым доводится до максимума энергия на единицу массы. Кроме того, нанотрубки могут быть отделены от подложки, и для получения электрода псевдоконденсатора на проводящую подложку могут быть осаждены свободно располагающиеся нанотрубки с рандомизированой ориентацией. 2 н. и 22 з.п. ф-лы, 20 ил.

2521083
выдан:
опубликован: 27.06.2014
СПОСОБ ЭКСПЛУАТАЦИИ ЭЛЕКТРОХИМИЧЕСКИХ КОНДЕНСАТОРОВ

Изобретение относится к области электротехники и касается способа эксплуатации электрохимических конденсаторов. Предложенный способ включает подключение конденсатора к источнику тока, проведение его заряда до заданного напряжения, прекращение заряда и разряд, при этом предварительно измеряют температуру конденсатора, по которой определяют максимальное рабочее напряжение заряда, исключающее газовыделение, и рассчитывают максимальное зарядное напряжение Umax, которое ограничивают в соответствие с уравнением Umax=k·t+b, где k и b - коэффициенты, определяемые экспериментально и зависящие от особенностей конструкции конденсатора, t - температура, при этом для измерения коэффициентов k и b рассчитывают ток непрерывного подзаряда. Изобретение позволяет обеспечить повышение мощности конденсатора и длительности срока его службы при безопасности эксплуатации путем оптимизации условий его заряда, что является техническим результатом изобретения. 2 ил., 1 табл., 2 пр.

2520183
выдан:
опубликован: 20.06.2014
НАНОКОМПОЗИТНЫЙ ЭЛЕКТРОХИМИЧЕСКИЙ КОНДЕНСАТОР И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к электротехнике, в частности, к производству электрохимических конденсаторов. Нанокомпозитный электрохимический конденсатор состоит из двух и более электродов, электролитов, сепараторов и коллекторов тока, размещенных в термостатируемом объеме; при этом каждая пара электрод и электролит представляют собой нанокомпозит, выполненный из наноуглеродного материала и твердого ионного органического или неорганического соединения эвтектического состава, при этом электроды выполнены из наноуглеродного материала с удельной поверхностью выше 1300 м2/г в виде пластин или листов толщиной 0,1-10мм и плотностью 0,8-1,2 г/см3. Способ изготовления конденсатора включает диспергирование приготовленной электродной смеси со связующим; прессование пластин или листов из диспергированной со связующим электродной смеси, отжига прессованных пластин или листов в окислительной и/или восстановительной атмосфере или под вакуумом и пропитку компактированных электродов в расплаве или растворе электролита при высокой температуре и под вакуумом с последующим охлаждением. Улучшение удельной энергоемкости заявленного электрохимического конденсатора является техническим результатом изобретения. 2 н. и 18 з.п. ф-лы, 6 ил.

2518150
выдан:
опубликован: 10.06.2014
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОЙ ОБКЛАДКИ ОКСИДНО-ПОЛУПРОВОДНИКОВОГО КОНДЕНСАТОРА

Изобретение относится к области электротехники, а именно к технологии нанесения покрытия из диоксида марганца на оксидированные объемно-пористые аноды вентильного металла, например тантала, ниобия. Способ получения катодной обкладки оксидно-полупроводникового конденсатора заключается в нанесении многослойного катодного покрытия из диоксида марганца на оксидированный объемно-пористый анод из вентильного металла и включает в себя многократные циклы пропитки-пиролиза анодов с использованием пропитывающего водного раствора с возрастающей от цикла к циклу концентрацией нитрата марганца с добавкой азотной кислоты в качестве активного негалогенированного окисляющего реагента в количестве, обеспечивающем в пропитывающем растворе величину рН 1, не более, и водяного пара во время пиролиза, а также в подформовке анодов после получения каждого слоя диоксида марганца и финишной обработке сформированного многослойного покрытия из диоксида марганца парами азотной кислоты при повышенной температуре 55-70°С в течение не менее 1 минуты. Техническим результатом заявленного изобретения являются стабильные улучшенные электрические характеристики конденсатора, в том числе низкое эквивалентное последовательное сопротивление, а также увеличение выхода годных изделий при сокращении расхода материалов и энергоресурсов. 2 табл., 2 ил., 6 пр.

2516525
выдан:
опубликован: 20.05.2014
УСТРОЙСТВО ПРЕОБРАЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ

Предложенное изобретение относится к устройству преобразования солнечной энергии в электрическую и основано на поглощающем свет электроде, соединенном с одномерным фотонным кристаллом, выполненным на основе наночастиц. Функция последнего состоит в том, чтобы локализовать падающий свет внутри электрода, таким образом увеличивая оптическое поглощение и эффективность преобразования энергии так называемого сенсибилизированного красителем и органического на полимерной основе или гибридного элемента. Фотонный кристалл содержит чередующиеся слои, обладающие разным показателем преломления, и может быть легко интегрирован в элемент. Свойства фотонного кристалла могут быть достигнуты путем регулирования распределения размеров наночастиц, которые образуют каждый слой с различной пористостью и, следовательно, показателем преломления, что позволяет в широком диапазоне длин волн улучшить оптическое поглощение и эффективность преобразования энергии. 8 н. и 5 з.п. ф-лы, 7 ил.

2516242
выдан:
опубликован: 20.05.2014
СОСТАВНАЯ ЕМКОСТЬ И ЕЕ ПРИМЕНЕНИЕ

Составной емкостный компонент содержит множество физически различных конденсаторных модулей, которые электрически соединены друг с другом. Различные модули обеспечивают повышенную электрическую и/или геометрическую гибкость при проектировании емкостного компонента. Каждый из конденсаторных модулей содержит множество базовых конденсаторов, установленных на специальной модульной плате печатного монтажа (PCB). Все базовые конденсаторы конденсаторных модулей являются идентичными, что упрощает как производство, так и обслуживание емкостного компонента. Формирование составной емкости на базовых конденсаторах одного типа значительно упрощает как их изготовление, так и обслуживание. Пространственная гибкость, достигаемая благодаря применению множества электрически взаимно соединенных конденсаторных модулей, является предпочтительным в таких силовых устройствах, где объем, доступный для емкостного компонента внутри устройства, может быть ограничен, по меньшей мере, в одном направлении. Геометрически гибкая компоновка, обеспечиваемая отдельными конденсаторными модулями, позволяет их располагать под произвольным углом друг к другу и таким образом занимать свободное пространство в силовых устройствах, увеличивая их составную емкость. 2 н. и 6 з.п. ф-лы, 8 ил.

2508574
выдан:
опубликован: 27.02.2014
ЭЛЕКТРОХИМИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ ИНФОРМАЦИИ

Изобретение относится к электрохимическим преобразователям информации (ЭХПИ) концентрационного типа, предназначенным, в том числе, для преобразования колебательных процессов механической природы в электрические сигналы. Техническим результатом является создание такой конструкции ЭХПИ, в которой было бы блокировано негативное влияние вымываемых из деталей ЭХПИ микропримесей, засоряющих рабочие катоды и выводящих ЭХПИ из строя. Электрохимический преобразователь информации содержит заполненный электролитом полый корпус, закрытый с торцов упругими мембранами и разделенный перегородкой с каналом, в котором установлены рабочие катоды, на две подмембранные камеры с анодами, и источник постоянного тока, минусы которого подключены к катодам, а плюсы - к анодам. Новым в предлагаемом электрохимическом преобразователе является то, что в подмембранные камеры дополнительно установлены между анодами и рабочими катодами катоды очистки, площади которых значительно больше площади рабочих катодов, при этом на время проведения технологического испытательного цикла при отключенных рабочих катодах катоды очистки подключают к минусу источника тока. 1 ил.

2504038
выдан:
опубликован: 10.01.2014
ТРИАЛКОКСИСИЛАНЫ, СПОСОБ ПОЛУЧЕНИЯ КАТОДНОЙ ОБКЛАДКИ НА ОСНОВЕ ПОЛИЭТИЛЕНДИОКСИТИОФЕНА С СИЛАНОВЫМ ПОДСЛОЕМ И ОКСИДНЫЙ КОНДЕНСАТОР С ТАКОЙ КАТОДНОЙ ОБКЛАДКОЙ

Изобретение относится к производству изделий электронной техники, конкретно - к производству оксидных конденсаторов с твердым электролитом на основе полимера. Предложены триалкоксисиланы общей формулы I, где R1 - Si(OAlk)3 или R1=-CH=N-CH2CH2CH2 Si(OAlk)3, R2=R3=-OCH2 CH2O-, в качестве кремнийсодержащих добавок для образования монослоя на поверхности танталового анода из спрессованного порошка тантала, а также применение триэтокси-2-тиенилсилана по тому же назначению. Предложены также способ получения катодной обкладки из полимерного электролита с использованием заявленных триалкоксисиланов и оксидный конденсатор с твердым электролитом, содержащий секцию из объемно-пористого анода из вентильных металлов с поверхностным слоем, полученным с использованием заявленных триалкоксисиланов. Технический результат - получение конденсатоорв с улучшенными техническими и эксплуатационными характеристиками. 4 н.п. ф-лы, 1 ил., 1 табл., 3 пр.

2500682
выдан:
опубликован: 10.12.2013
СПОСОБ ПОЛУЧЕНИЯ ЧАСТИЦ ТВЕРДОГО ЭЛЕКТРОЛИТА Li1+xAlxTi2+x(PO4)3 (0,1 x 0,5)

Изобретение относится к способу получения частиц твердого электролита Li1+xAlxTi2-x (PO4)3 (0,1 x 0,5), включающему смешивание первого раствора, содержащего азотную кислоту, воду, азотнокислый литий, азотнокислый алюминий, фосфорнокислый аммоний NH4H2PO4 или фосфорную кислоту, и второго раствора, содержащего соединение титана и растворитель, с образованием азотнокислого коллективного раствора, нагревание коллективного раствора с получением прекурсора и его прокалку. При этом в качестве растворителя во втором растворе используют пероксид водорода, а в качестве соединения титана - пероксидный комплекс титана, азотную кислоту дополнительно вводят во второй раствор до обеспечения рН коллективного раствора не более 2, нагревание коллективного раствора ведут при 150-170°С с разложением пероксидного комплекса титана и получением аморфного прекурсора, а прокалку прекурсора осуществляют при 600-800°С. Способ позволяет синтезировать частицы электролита со средним размером 215-280 нм, а полученный на их основе твердый электролит является монофазным и имеет ионную проводимость до 6,3·10 -4 См/см при комнатной температуре. Способ имеет пониженную энергоемкость и повышенную экологичность. 2 з.п. ф-лы, 3 пр.

2493638
выдан:
опубликован: 20.09.2013
СУПЕРКОНДЕНСАТОР С МНОЖЕСТВОМ ДОРОЖЕК

Объектом изобретения является суперконденсатор, содержащий по меньшей мере два находящихся рядом друг с другом комплекса (1, 2), разделенные расстоянием d, и по меньшей мере один общий комплекс (3) напротив двух находящихся рядом друг с другом комплексов (1, 2), отделенный от них по меньшей мере одним разделителем (4), при этом разделитель (4) и комплексы (1, 2, 3) намотаны спиралевидно вместе, образуя намотанный элемент. Снижение сопротивления системы и увеличение допустимой энергии на единицу объема, а также повышение срока службы заявленного комплекса является техническим результатом заявленного изобретения. 2 н. и 25 з.п. ф-лы, 15 ил., 1 табл.

2493629
выдан:
опубликован: 20.09.2013
СУПЕРКОНДЕНСАТОР С МНОЖЕСТВОМ ОБМОТОК

Объектом настоящего изобретения является суперконденсатор с двойным электрохимическим слоем, содержащий по меньшей мере два комплекса (2, 3) и по меньшей мере один разделитель (4) между ними, при этом комплексы (2, 3) и разделитель (4) намотаны вместе спиралевидно, образуя намотанный элемент (10). Согласно изобретению суперконденсатор дополнительно содержит по меньшей мере один другой комплекс (1) и по меньшей мере один другой разделитель (4), при этом другой комплекс (1) и другой разделитель (4) намотаны вместе спиралевидно вокруг намотанного элемента (10), образуя по меньшей мере один последующий намотанный элемент (20), причем эти последовательно намотанные элементы (10, 20) разделены электроизолирующим пространством. Снижение сопротивления между двумя последовательно соединенными звеньями суперконденсатора, а также повышение объемной и массовой плотности энергии, является техническим результатом предложенного изобретения. 2 н. и 31 з.п. ф-лы, 28 ил.

2492542
выдан:
опубликован: 10.09.2013
УСТРОЙСТВО ЗАЩИТЫ ОТ ПРЕВЫШЕНИЯ ДАВЛЕНИЯ ДЛЯ СУПЕРКОНДЕНСАТОРА

Объектом изобретения является устройство защиты против превышения давления для суперконденсатора. В суперконденсаторе, содержащем закрытую камеру, которая оборудована средствами (10) обмена газом с внешней средой и в которой установлены два электрода с большой удельной поверхностью, разделенные разделителем, разделитель и электроды пропитаны электролитом, при этом средства газообмена содержат мембрану, проницаемую по отношению к водороду и к его изотопам и непроницаемую по отношению к другим газообразным веществам, которые имеют эффективное сечение, превышающее или равное 0,3 нм, при температуре от -50°C до 100°C. Увеличение скорости селективного удаления водорода, образующегося внутри суперконденсатора, одновременно препятствуя проникновению другого газа снаружи внутрь суперконденсатора, является техническим результатом изобретения. 23 з.п. ф-лы, 9 ил., 4 табл., 5 пр.

2492541
выдан:
опубликован: 10.09.2013
ТОКОСЪЕМНИК ОТРИЦАТЕЛЬНОГО ЭЛЕКТРОДА ДЛЯ ГЕТЕРОГЕННОГО ЭЛЕКТРОХИМИЧЕСКОГО КОНДЕНСАТОРА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ

Изобретение относится к технологии изготовления токосъемников для электрохимических конденсаторов для использования в электрохимическом конденсаторе с двойным электрическим слоем, имеющем сернокислотный электролит. Токосъемник использует проводящую углеродную основу (например, графитовую фольгу) с проводимостью p-типа. Защитная пленка покрывает, по меньшей мере, часть основы из графитовой фольги. Защитная пленка состоит из проводящего композиционного материала, выполненного из проводящего углерода и проводящего органического полимера с проводимостью p-типа. Защитную пленку выращивают на основе токосъемника так, что она предпочтительно заполняет поры основы токосъемника. Часть наконечника основы токосъемника может быть защищена изолирующим полимерным материалом. Техническим результатом является обеспечение низкого и стабильного контактного сопротивления с активной массой его электрода. 3 н. и 21 з.п. ф-лы, 18 ил.

2492540
выдан:
опубликован: 10.09.2013
КРАСИТЕЛЬ, СОДЕРЖАЩИЙ ЗАКРЕПЛЯЮЩУЮ ГРУППУ В МОЛЕКУЛЯРНОЙ СТРУКТУРЕ

Изобретение относится к красителю, содержащему закрепляющую группу в своей молекулярной структуре, причем указанная закрепляющая группа обеспечивает ковалентное связывание указанного красителя с поверхностью, и указанная закрепляющая группа представлена формулой 1 , в которой место присоединения указанной закрепляющей группы внутри указанной молекулярной структуры указанного красителя находится при терминальном атоме углерода, помеченном звездочкой в указанной выше формуле. При этом G выбирают из -COOH, -SO 3H, -PO3H2, -BO2H 2 -SH, -ОН, -NH2, А выбирают из группы, состоящей из H, -CN, -NO2, -COOR, -COSR, -COR, -CSR, -NCS, -CF 3, -CONR2, -OCF3, C6H 5-mFm, в которой m=1-5, R представляет собой Н или любую линейную или разветвленную алкильную цепочку общей формулы -CnH2n+1, n=0-12, предпочтительно 0-4, или любой замещенный или незамещенный фенил или бифенил, где указанный краситель представлен формулой (2) или формулой (4)

2490746
выдан:
опубликован: 20.08.2013
ЭЛЕКТРОД ДЛЯ ИСПОЛЬЗОВАНИЯ В ЭЛЕКТРОХИМИЧЕСКОМ КОНДЕНСАТОРЕ С ДВОЙНЫМ ЭЛЕКТРИЧЕСКИМ СЛОЕМ (ВАРИАНТЫ)

Изобретение относится к производству электрохимических конденсаторов с двойным электрическим слоем (DEL). Предложенные электроды с DEL основаны на неметаллических проводящих материалах, включая пористые углеродные материалы, и способны обеспечить высокие удельные энергетические, емкостные и мощностные параметры электролитических конденсаторов. Проводимость Р-типа и высокую концентрацию дырок в материалах электрода можно обеспечить тепловым, ионным или электролитическим легированием акцепторными примесями; облучением высокоэнергетическими быстрыми частицами или квантами; или химической, электролитической и/или тепловой обработкой. Настоящее изобретение позволяет увеличить удельные энергетические, емкостные и мощностные параметры, а также снизить стоимость различных электрохимических конденсаторов с DEL. Предложенные электроды с DEL могут использоваться как положительные и/или отрицательные электроды симметричных и асимметричных электролитических конденсаторов с водными и неводными электролитами. 3 н. и 19 з.п. ф-лы, 9 ил.

2483383
выдан:
опубликован: 27.05.2013
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОЙ ОБКЛАДКИ ОКСИДНО-ПОЛУПРОВОДНИКОВОГО КОНДЕНСАТОРА

Изобретение может быть использовано в электронной промышленности, в технологии пропитки пористых материалов, в частности при производстве оксидно-полупроводниковых конденсаторов, в том числе чип-конденсаторов. Способ получения катодной обкладки из диоксида марганца заключается в нанесении многослойного катодного покрытия на оксидированный объемно-пористый анод и включает в себя циклические стадии пропитки анода раствором нитрата марганца с последующим пиролитическим разложением нитрата марганца до диоксида марганца при повышенных температурах и подформовкой через каждые несколько нанесенных слоев, причем при пропитке производят удаление воздуха из пор анода путем предварительного вакуумирования и/или медленного погружения анода в пропитывающий раствор с последующей ультразвуковой обработкой пропитываемого анода. Изобретение обеспечивает изготовление катодной обкладки хорошего качества из уменьшенного количества слоев диоксида марганца и позволяет получить оксидно-полупроводниковый конденсатор с высокими электрическими характеристиками при сокращенном технологическом цикле и сниженном расходе материалов. 3 з.п. ф-лы, 4 табл., 20 пр.

2480855
выдан:
опубликован: 27.04.2013
ЭЛЕКТРОХИМИЧЕСКИЙ СУПЕРКОНДЕНСАТОР

Предложенное изобретение относится к области электротехники и может быть использовано для производства электрохимических суперконденсаторов с двойным электрическим слоем. Повышение герметичности суперконденсатора и исключение вероятности образования электролитных перемычек между элементами накопительных ячеек (блоков) и между ячейками (блоками) элементов является техническим результатом изобретения. Электрохимический суперконденсатор содержит самонесущий корпус с силовыми прижимами, по крайней мере один сжатый блок элементов, который включает два сепаратора, разнополярные эластичные электроды из частиц углеродного материала, расположенных на одной поверхности сепараторов, пропитанных электролитом, два электроннопроводящих коллектора, расположенных между электродами и выступающих за края электродов, сепараторов, и токовыводы. Электроннопроводящие коллекторы охватывают электроды и изолированы по периметру герметизирующим покрытием, состоящим из двух слоев. Первый слой выполнен из неотверждающейся полимерной композиции, а второй слой выполнен из смеси отдельных частиц политетрафторэтилена, включающей открытопористые крупные частицы с размером, равным 0,5-1,0 расстояния между коллекторами и мелких частиц полимера с размером 20-400 мкм, причем содержание крупных частиц находится в пределах 50-80% от количества смеси. 3 з.п. ф-лы, 3 ил, 1 пр.

2475879
выдан:
опубликован: 20.02.2013
МИКРОПОРИСТАЯ ПОЛИМЕРНАЯ МЕМБРАНА, МОДИФИЦИРОВАННАЯ ВОДОРАСТВОРИМЫМ ПОЛИМЕРОМ, СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ

Изобретение относится к мембранным материалам. Микропористую полиолефиновую мембрану, модифицированную водорастворимым полимером, получают путем сополимеризации смеси из 100 частей водорастворимого полимера, 30-500 частей гидрофобного мономера, 0-200 частей гидрофильного мономера и 1-5 частей инициатора с образованием коллоидной полимерной эмульсии. В эмульсию добавляют 0-100% неорганического наполнителя и 20-100% пластфикатора, принимая за 100% содержание сухого вещества в коллоидной полимерной эмульсии, с получением суспензии. Суспензию наносят на одну или две поверхности микропористой полиолефиновой мембраны с модифицированной поверхностью и сушат. Изобретение позволяет получить мембрану, модифицированную водорастворимым полимером, которая обладает эффектом тепловой защиты и малой термической усадкой, и позволяет уменьшить проблемы, связанные с усадкой микропористых полиолефиновых мембран при высокой температуре. 3 н. и 17 з.п. ф-лы.

2470700
выдан:
опубликован: 27.12.2012
СПОСОБ ПОЛУЧЕНИЯ КАТОДНОЙ ОБКЛАДКИ КОНДЕНСАТОРА И ОКСИДНО-ПОЛУПРОВОДНИКОВЫЙ КОНДЕНСАТОР

Изобретение относится к производству оксидно-полупроводниковых конденсаторов и способам их изготовления. Техническим результатом изобретения является улучшение электрических и частотных характеристик. Согласно изобретению способ получения катодной обкладки конденсатора включает в себя нанесение на секции многослойного покрытия из диоксида марганца, которое при формировании каждого слоя предусматривает пропитку секций в водном растворе азотнокислого марганца при температуре 40°С в течение 3-5 минут с последующим пиролитическим разложением азотнокислого марганца в присутствии водяного пара при температуре 270°С в течение 3-5 минут, когда через 3 нанесенные слоя производят подформовку секций в водном растворе уксусной кислоты, причем водяной пар образуется при температуре пиролитического разложения от впрыскивания деионизованной воды в количестве 5-9 литров в минуту, а предпоследний слой дополнительно содержит диоксид кремния и получен путем пропитки секций кремниево-марганцевой суспензией плотностью 2,44 г/см3, состоящей из 60 мас.% водного раствора азотнокислого марганца, 39,5 мас.% мелкодисперсного порошка диоксида марганца и 0,5 мас.% мелкодисперсного порошка диоксида кремния, при температуре 65°С с последующим пиролитическим разложением азотнокислого марганца. 2 н. и 4 з.п. ф-лы, 2 ил., 3 табл., 3 пр.

2463679
выдан:
опубликован: 10.10.2012
СПОСОБ ПОЛУЧЕНИЯ ОКСИДНОГО СЛОЯ НА АНОДАХ ОКСИДНО-ПОЛУПРОВОДНИКОВЫХ И ЭЛЕКТРОЛИТИЧЕСКИХ КОНДЕНСАТОРОВ

Изобретение относится к способам получения оксидного слоя на анодах оксидно-полупроводниковых и электролитических конденсаторов. Согласно изобретению в способе получения оксидного слоя на анодах оксидно-полупроводниковых и электролитических конденсаторов, основанном на электрохимической обработке анодов, размещенных в ванне с электролитом, включающем формовку анодов и определение сопротивления электролита в начале процесса формовки анодов, стабилизируют допустимое значение мощности рассеяния, выделяемой на анодах конденсаторов Рдоп до момента достижения напряжения оксидирования, измеряют напряжение на ванне с электролитом UВ и текущее значение тока анода I а, определяют напряжение на анодах конденсаторов U a по формуле Uа=UВ-Iа·R электролита, где Iа - текущее значение тока анода в А, Rэлектролита - сопротивление электролита в Ом, в начале процесса формовки анодов, далее регулируют текущее значение тока анода по формуле Ia=Pдоп/U a, где Рдоп задается технологическим процессом в Вт до достижения напряжения на анодах конденсаторов напряжения оксидирования, затем переходят в режим регулирования напряжения на ванне с электролитом, поддерживая напряжение на анодах конденсаторов равным напряжению оксидирования. Сокращение времени мощности рассеяния позволяет снизить продолжительность процесса оксидирования, что является техническим результатом изобретения. 5 ил.

2456697
выдан:
опубликован: 20.07.2012
МОДУЛЬ АККУМУЛЯТОРА ЭНЕРГИИ

Изобретение относится к модулю аккумулятора энергии. Техническим результатом изобретения является повышение взрывобезопасности аккумулятора. Согласно изобретению модуль аккумулятора энергии состоит из корпуса с расположенными в нем компонентами (5, 5', 6, 6'). При этом компоненты (5, 5', 6, 6') являются конденсаторами, например двухслойными конденсаторами и/или электролитическими конденсаторами. В корпусе имеется заполнитель (10), который связывает выступающую в случае повреждения электролитическую жидкость или также электролитические газы. В качестве заполнителя (10) применяются насыпные материалы с большой удельной поверхностностью, такие как цеолиты или также активированный уголь. При необходимости поверхностные площади могут еще снабжаться каталитическим покрытием. 14 з.п. ф-лы, 1 ил.

2450382
выдан:
опубликован: 10.05.2012
КОМПОЗИТ, СОДЕРЖАЩИЙ КАРБОНИЗОВАННЫЕ БИОПОЛИМЕРЫ И УГЛЕРОДНЫЕ НАНОТРУБКИ

Изобретение касается углеродсодержащих композитов для электрохимических конденсаторов. Техническим результатом изобретения является увеличение емкости электродов, содержащих композит. Согласно изобретению композит, пригодный в качестве сохраняющего заряд материала для электрохимических конденсаторов, содержит углеродные нанотрубки и углеродистый материал, при этом данный углеродистый материал представляет собой остаток карбонизации биополимера или морских водорослей, богатых гетероатомами, где данный остаток карбонизации биополимера или морских водорослей является электропроводящим и имеет содержание гетероатомов, детектируемое с помощью РФЭС, по меньшей мере, 6%. 4 н. и 17 з.п. ф-лы, 8 ил., 4 табл.

2447531
выдан:
опубликован: 10.04.2012
СПОСОБ ИЗГОТОВЛЕНИЯ АНОДОВ ОБЪЕМНО-ПОРИСТЫХ ЭЛЕКТРОЛИТИЧЕСКИХ КОНДЕНСАТОРОВ

Изобретение относится к технологии изготовления объемно-пористых анодов (ОПА). Техническим результатом изобретения является увеличение удельной емкости. Согласно изобретению способ изготовления ОПА включает подготовку исходной смеси, состоящей из порошка тугоплавкого металла, с пониженным содержанием кислорода и по меньшей мере одного связующего реагента, содержащего пластификатор и/или органическое связующее, прессование подготовленной смеси, удаление связующего реагента путем термического разложения и спекание прессованного анода, при этом связующий реагент в качестве пластификатора содержит дистеарилэтилендиамин, в качестве органического связующего полифторированные спирты-теломеры общей формулы H(CF2CF2)n·CH 2OH, где n=1-6, при этом соотношение между порошком металла и связующим составляет 1:0,03-0,05, прессование проводят до достижения плотности 2-5 г/см3, связующее удаляют при температуре 450-500°С, а спекание прессованного анодного тела проводят при температуре 1345-1700°С. Для повышения сыпучести перед прессованием проводят дополнительный подогрев порошка при температуре 50-60°С и пропускают через сито, в качестве исходного порошка используют нанокристаллический металлический порошок тантала или ниобия, полученный электролитическим способом крупностью 10-100 нм. 3 з.п. ф-лы, 4 пр.

2446499
выдан:
опубликован: 27.03.2012
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРИЧЕСКОГО КОНДЕНСАТОРА

Изобретение относится к технологии изготовления изделий радиоэлектронной техники, а именно к изготовлению конденсаторов, и может быть использовано при изготовлении малогабаритных конденсаторов с высокой удельной емкостью. Технический результат заключается в упрощении способа и улучшении электрических характеристик. Согласно изобретению способ изготовления электрического конденсатора включает формирование двух обкладок из металла, одна из которых выполнена из меди, покрытой оксидом меди, а другая из алюминия, диэлектрический слой формируют за счет окисления алюминиевого электрода в твердой фазе.

2443034
выдан:
опубликован: 20.02.2012
СПОСОБ ИЗГОТОВЛЕНИЯ ЭЛЕКТРОДОВ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО ИСТОЧНИКА ТОКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Изобретение относится к области электротехники и может быть использовано для производства электрохимических источников тока, таких как аккумуляторы и суперконденсаторы. Способ изготовления электродов осуществляют путем нанесения активной массы на подложку, первой и последующей прокатки через валки подложки, расположенной между лентами из фильтровального материала, и последующей резки подложки на отдельные электроды. Первую прокатку подложки со стороны активной массы осуществляют одновременно двумя лентами, наложенными непосредственно друг на друга своими поверхностями, из материла с различной пористостью. Внешнюю ленту, контактирующую с активной массой, выполняют из материала с высокой пористостью с размером пор 10-70 мкм, например нетканого полипропилена или полиэтилена, а внутреннюю ленту из материала с низкой пористостью с размером пор не более 6 мкм, например бумаги. Давление при первой и последующей прокатке берут в пределах 4,5-11 кг/см 2. Устройство для изготовления электродов содержит транспортирующий механизм в виде ленточного транспортера, намазочный бункер, раму с установленными на ней верхними приемными приводными бобинами и подающими бобинами, нижними приемными приводными бобинами и подающими бобинами, валки первой и валки последующей прокатки, и механизм резки электродов. Между парами валков первой и последующей прокатки пропущены верхние и нижние фильтровальные ленты из низкопористого материала с соответствующих им бобин. Устройство снабжено одной или двумя бесконечными фильтровальными лентами из высокопористого материала, которые установлены в валках первой прокатки и расположены непосредственно на внешней поверхности одной или двух лент из материала с низкой пористостью (при прокатке подложки с одной или двух сторон). Ширина бесконечной ленты соответствует ширине ленты из низкопористого материала. На раме смонтированы опорные вращающиеся ролики, на которых установлена бесконечная лента. Оси опорных роликов установлены параллельно осям бобин первой прокатки. Бобины первой прокатки расположены внутри ветвей бесконечной ленты и находятся в одной плоскости с опорными роликами. Отношение толщины материала с высокой пористостью к толщине материала с низкой пористостью берут равным 1:1-1:2,1. Техническим результатом изобретения является уменьшение технологических потерь материалов и снижение брака по количеству массы в электроде. 2 н. и 7 з.п. ф-лы, 3 ил.

2439752
выдан:
опубликован: 10.01.2012
ЭЛЕКТРИЧЕСКИЙ ДВУХСЛОЙНЫЙ КОНДЕНСАТОР

Изобретение относится к электрическим двухслойным конденсаторам. В электрическом двухслойном конденсаторе рабочий отсек (1а), содержащий многослойные ячейки, покрыт для их защиты алюминиевой многослойной пленкой. Каждый из пары токоприемных выводов (12 и 13), выполненных на двух концевых частях рабочего отсека (1а) конденсатора, содержит первые отогнутые части (12b и 13b), отгибаемые вдоль боковой поверхности (1b) рабочего отсека (1а), и вторые отогнутые части (12с и 13с), отгибаемые в наружном направлении в середине боковой поверхности (1b) рабочего отсека (1а). Обе вторые отогнутые части (12с и 13с) парных токоприемных выводов (12 и 13) покрыты в общей плоскости алюминиевой многослойной пленкой, а концевые части парных токоприемных выводов (12 и 13) выступают наружу из указанной пленки, при этом корневые части каждой из вторых отогнутых частей снабжены пластмассовыми корпусами, которые надеты на алюминиевую многослойную пленку. Техническим результатом является повышенная надежность благодаря повышению характеристик герметичности и прочности токоприемных выводных частей. 2 з.п. ф-лы, 10 ил.

2439732
выдан:
опубликован: 10.01.2012
Наверх