Последующая обработка монокристаллов или гомогенного поликристаллического материала с определенной структурой: ..в растворах или расплавах – C30B 33/10

МПКРаздел CC30C30BC30B 33/00C30B 33/10
Раздел C ХИМИЯ; МЕТАЛЛУРГИЯ
C30 Выращивание кристаллов
C30B Выращивание монокристаллов; направленная кристаллизация эвтектик или направленное расслаивание эвтектоидов; очистка материалов зонной плавкой; получение гомогенного поликристаллического материала с определенной структурой; монокристаллы или гомогенный поликристаллический материал с определенной структурой; последующая обработка монокристаллов или гомогенного поликристаллического материала с определенной структурой; устройства для вышеуказанных целей
C30B 33/00 Последующая обработка монокристаллов или гомогенного поликристаллического материала с определенной структурой
C30B 33/10 ..в растворах или расплавах

Патенты в данной категории

СПОСОБ ОБРАБОТКИ ОПТИЧЕСКИХ ЭЛЕМЕНТОВ ИЗ СЕЛЕНИДА ЦИНКА

Изобретение относится к способам обработки массивных (диаметром до 200 мм) оптических элементов из селенида цинка, используемых в качестве пассивных оптических элементов высокомощных СО 2-лазеров и других приборов, работающих в ИК-диапазоне длин волн. Способ включает глубокую шлифовку микропорошками окиси алюминия и глубокую химико-механическую полировку с использованием в качестве материала полировальника смол на основе модифицированной живичной канифоли с температурой размягчения 50-80°С, химически активного компонента, в качестве которого используют азотную или хлорную кислоты или их смесь с концентрацией 0,5-5 М и смазочно-охлаждающей жидкости (СОЖ). Полировку ведут при давлении 25-500 г/см 2. Способ позволяет получить поверхность селенида цинка, отвечающую 3 классу чистоты поверхности по ГОСТ 11141-84 с отклонением от плоскости не более одного интерференционного кольца с местной ошибкой не более 0,1 интерференционного кольца. Скорость съема материала при упомянутых условиях обработки составляет (4-11)·10 -3 г/ч·см2. 2 з.п. ф-лы.

2338014
патент выдан:
опубликован: 10.11.2008
СПОСОБ ПОЛУЧЕНИЯ АТОМНО-ГЛАДКОЙ ПОВЕРХНОСТИ ПОДЛОЖКИ АРСЕНИДА ГАЛЛИЯ

Изобретение относится к микроэлектронике, в частности к способам приготовления атомно-гладких поверхностей полупроводников. Способ включает химико-динамическую полировку поверхности подложки в полирующем травителе, содержащем серную кислоту, перекись водорода и воду в течение 8÷10 мин, снятие слоя естественного оксида в водном растворе соляной кислоты до проявления гидрофобных свойств чистой поверхности подложки, промывку в деионизованной воде и сушку в центрифуге. После сушки подложку обрабатывают в парах селена в камере квазизамкнутого объема с образованием слоя селенида галлия при температуре подложки - Тп=(310-350)°С, температуре стенок камеры - Тс=(230-250)°С, температуре селена - TSe=(280-300)°C в течение 3÷10 мин, после чего подложку снова помещают на 10÷15 мин в водный раствор соляной кислоты для стравливания слоя селенида галлия. Изобретение позволяет получить атомно-гладкую поверхность арсенида галлия с масштабом неоднородности порядка 3Å, что дает возможность использовать данные подложки для конструирования нанообъектов с помощью эффектов самоорганизации. 4 ил.

2319798
патент выдан:
опубликован: 20.03.2008
СПОСОБ ПОЛИРОВКИ КРИСТАЛЛОВ ХЛОРИДА СЕРЕБРА

Изобретение относится к области изготовления оптических элементов и может быть использовано в инфракрасной технике. Способ состоит в абразивной полировке кристаллов AgCl с водным раствором тиосульфата натрия, завершающейся промывкой обрабатываемого изделия в 30-40% растворе 2-метил-2-аминопропана (СН3) 3CNH3 в этаноле C 2H5OH, и последующей сухой финишной полировке. Способ обеспечивает высокоточную полировку изделий из кристаллов хлорида серебра и высокое качество полированных поверхностей.

(56) (продолжение):

CLASS="b560m"Preparation of bulk oriented samples silver bromide and silver chloride single crystals. «Kristall und Technik», 10(3), 1975, 259-262, STN БД СА, AN 82:132176, abstract. РЕГЕЛЬ В.Р. и др. Выявление выходов дислокаций на поверхность кристалла методом травления. Обзор. «Кристаллография», т.4, вып.6, с.941.

2311499
патент выдан:
опубликован: 27.11.2007
СПОСОБ ТРАВЛЕНИЯ МОНОКРИСТАЛЛОВ ТАНТАЛАТА ЛИТИЯ

Изобретение относится к способу гидротермального травления, обеспечивающего возможность создания экологически чистой методики травления монокристаллов танталата лития, используемых в электронной технике. Обеспечивается возможность травления больших монокристаллов более 2 10 10 мм (кристаллы при травлении не растрескиваются), а также исключается необходимость употребления дорогостоящих неактивных температуроустойчивых материалов таких, как платина, иридий, позволяющих удешевить процесс и повысить скорость травления. Сущность способа состоит в обработке монокристаллов танталата лития в гидротермальных условиях при 150 300°С и давлении не менее 50 атм, а в качестве травильного раствора используют водные растворы смеси одной из кислот H3PO4, HNO3 и одной из солей MeNO3, MeF, MeHF2, где Ме щелочной металл, или в водных растворах одной из солей MeNO3, MeF или MeHF2, или в водном растворе щелочи MeOH и соли MeNO3.
2040601
патент выдан:
опубликован: 25.07.1995
СПОСОБ ТРАВЛЕНИЯ МОНОКРИСТАЛЛОВ МЕТАНИОБАТА ЛИТИЯ

Изобретение относится к способу гидротермального травления, обеспечивающему возможность создания экологически чистой методики травления монокристаллов метаниобата лития, используемых в электронной технике. Достигнута возможность травления больших монокристаллов более 2 10 10 мм/ кристаллы при травлении не растрескиваются/, а также отпадает необходимость употребления дорогостоящих неактивных температуроустойчивых материалов, таких, как платина, иридий, позволяющих удешевить процесс и повысить скорость травления. Сущность способа состоит в обработке монокристаллов метаниобата лития в гидротермальных условиях при температуре 150 300°С и давлении не менее 50 атм, а в качестве травильного раствора используются водные растворы смеси одной из кислот H3PO4, HNO3 и одной из солей MeNO3, MeF, MeHF2, MeHPO4, MeH2PO4, где Ме щелочной металл, или водные растворы одной из солей MeH2PO4, Me2HPO4, MeHF2, где Ме щелочной металл, или водные растворы смеси щелочей МеОН и соли MeNO3, где Ме щелочной металл, или попарно смешанных водных растворов солей MeNO3, MeH2PO4, MeHF2, МеF.
2039134
патент выдан:
опубликован: 09.07.1995
Наверх