Соединения никеля – C01G 53/00

МПКРаздел CC01C01GC01G 53/00
Раздел C ХИМИЯ; МЕТАЛЛУРГИЯ
C01 Неорганическая химия
C01G Соединения металлов, не отнесенных к предыдущим подклассам  C01D или  C01F
C01G 53/00 Соединения никеля

C01G 53/02 .карбонилы 
C01G 53/04 .оксиды; гидроксиды 
C01G 53/06 .карбонаты 
C01G 53/08 .галогениды 
C01G 53/09 ..хлориды
C01G 53/10 .сульфаты 
C01G 53/11 .сульфиды
C01G 53/12 .комплексные соединения с аммиаком 

Патенты в данной категории

СПОСОБ ПОЛУЧЕНИЯ МИЛЛЕРИТА С ИСПОЛЬЗОВАНИЕМ СУЛЬФАТРЕДУЦИРУЮЩИХ БАКТЕРИЙ

Изобретение относится к биотехнологии. Предложен способ получения миллерита путем помещения чистой культуры сульфатредуцирующих бактерий, устойчивых к ионам меди и других металлов, в синтетическую среду, содержащую соли металлов, с добавлением двухвалентного никеля и питательных веществ, включающих в себя растворы витаминов, солей калия, аммония, натрия, кальция, кофакторов, лактата, сульфида натрия. При этом в питательную среду вводят глицерин. Осуществляют культивирование бактерий при температуре 28ºС. Образовавшийся осадок, содержащий миллерит, собирают центрифугированием и высушивают. Образование кристаллического миллерита начинается в течение 7 суток, а стабильная кристаллическая фаза миллерита образуется в течение 20 суток. Способ позволяет получать миллерит, не содержащий примесей других сульфидов, при укороченных сроках культивирования. 6 ил., 3 табл., 1 пр.

2528777
выдан:
опубликован: 20.09.2014
ЛАКУНАРНЫЙ ГЕТЕРОПОЛИАНИОН СТРУКТУРЫ КЕГГИНА НА ОСНОВЕ ВОЛЬФРАМА ДЛЯ ГИДРОКРЕКИНГА

Изобретение предназначено для химической промышленности и может быть использовано в катализаторах процессов гидрокрекинга, гидроконверсии, гидроочистки. Для получения гетерополисоединения, состоящего из никелевой соли лакунарных гетерополианионов типа Кеггина, содержащей вольфрам, к гетерополивольфрамовым кислотам добавляют x+y/2 эквивалентов гидроксида бария. Затем катионы Ba2+ замещают катионами Ni2+ в результате ионного обмена на катионообменных смолах, предварительно подвергнутых обмену с катионами Ni2+. Полученное гетерополисоединение имеет формулу Nix+y/2AW11-yO39-5/2y ,zH2O, а в одном из вариантов имеет формулу Ni x+1AW9O34,zH2O, где А выбрано из фосфора, кремния и бора, y=0 или 2, x=3,5, если А означает фосфор, x=4, если А означает кремний, x=4,5, и z есть число от 0 до 36. Атомы никеля не замещают атомы вольфрама, а находятся в положении противоиона в структуре указанного соединения. Изобретения обеспечивают высокое отношение Ni/W и выход более 80%. 5 н. и 6 з.п. ф-лы, 2 ил., 4 табл., 4 пр.

2509729
выдан:
опубликован: 20.03.2014
СПОСОБ ПОЛУЧЕНИЯ УЛЬТРАМИКРОДИСПЕРСНОГО ПОРОШКА ОКСИДА НИКЕЛЯ НА ПЕРЕМЕННОМ ТОКЕ

Изобретение относится к способу получения ультрамикродисперсного порошка оксида никеля. Способ получения ультрамикродисперсного порошка оксида никеля включает электролиз в 17 М растворе гидроксида натрия на переменном синусоидальном токе частотой 20 Гц с никелевыми электродами. При этом процесс электролиза проводят при температуре 20-30°C и напряжении на электродах 4 В. Техническим результатом данного изобретения является разработка способа получения ультрамикродисперсного порошка оксида никеля, пригодного для использования в процессе каталитического получения наноуглеродных материалов пиролизом углеводородного сырья при уменьшении затрат на обогрев ячейки и упрощении ее конструкции. 3 пр.

2503748
выдан:
опубликован: 10.01.2014
СПОСОБ ПОЛУЧЕНИЯ АЛЮМОНИКЕЛЕВОГО ПИГМЕНТА

Изобретение может быть использовано в производстве термостойких пигментов для декорирования различных изделий из фарфора, фаянса, стекла, пластмасс. Способ получения алюмоникелевого пигмента включает приготовление исходных реакционных водных растворов, содержащих соль алюминия (III) и соль никеля (II), осаждение из раствора продукта-прекурсора, отделение от раствора, промывку водой, сушку и обжиг. В качестве реагента-осадителя используют сильноосновный гелевый анионит АВ-17-8 в гидроксидной форме. Обжиг проводят при температуре 750°С. Изобретение позволяет получить пигмент голубого цвета на основе шпинелей без использования агрессивных сред, высоких температур и давлений. 4 ил., 2 пр.

2482143
выдан:
опубликован: 20.05.2013
СЛОЖНЫЙ ВАНАДАТ МАРГАНЦА И НИКЕЛЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к лакокрасочной промышленности. Сложный ванадат марганца и никеля состава Mn2-2xNi 2xV2O7, где 0,20 х 0,27; может быть использован в качестве темного пигмента, отражающего излучение в ИК-диапазоне. Способ получения сложного ванадата марганца и никеля вышеуказанного состава включает приготовление исходной смеси ингредиентов, содержащей Мn2V2 O7 и Ni2V2O7, взятых в соотношении (0,73÷0,80):(0,27÷0,20) соответственно. Далее смесь перетирают в присутствии этилового спирта и обжигают на воздухе при температуре 700-710°С в течение 5-6 часов с последующим измельчением, а затем при температуре 750-760°С в течение 40-42 часов с измельчением после 10 часов обжига. Изобретение позволяет получить темный пигмент с высокой отражающей способностью в ИК-диапазоне, термостабильный как при комнатной, так и при более высоких температурах, химически устойчивый в широком интервале значений рН среды. 2 н.п. ф-лы, 3 ил., 3 пр.

2471712
выдан:
опубликован: 10.01.2013
ОДНОРОДНЫЕ НАНОЧАСТИЦЫ НИКЕЛЯ, ПОКРЫТЫЕ ОБОЛОЧКОЙ, И СПОСОБ ИХ ПОЛУЧЕНИЯ

Изобретение относится к нанотехнологии. Однородные наночастицы никеля покрыты оболочкой, состоящей из углеродных слоев. Наночастицы никеля имеют сферическую форму и размер 4-5 нм. Для получения однородных наночастиц никеля, покрытых оболочкой, термическому разложению в инертной атмосфере подвергают нормальный малеат никеля или кислый малеат никеля. Термическое разложение проводят при нагревании до температуры 450°С, далее продукт охлаждают в инертной атмосфере. Изобретение позволяет получить однородные наночастицы никеля с узкой областью распределения по размерам, которые покрыты углеродными слоями, близкими по морфологии к графеновым слоям. 2 н. и 2 з.п. ф-лы, 7 ил., 1 пр.

2466098
выдан:
опубликован: 10.11.2012
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА НИКЕЛЯ (II)

Изобретение может быть использовано в химической промышленности. Способ получения гидроксида никеля (II) включает обработку кислого раствора сульфата никеля (II) в две стадии, на первой аммиачной водой до значения pH 4-4,5, на второй гидроксидом натрия до значения pH 11-12. На второй стадии процесс ведут путем дозирования суспензии первой стадии в раствор гидроксида натрия. Далее проводят отмывку осадка от примесей в восходящем потоке с переменным гидродинамическим режимом, отжим и сушку. Изобретение позволяет повысить чистоту продукта и однородность его гранулометрического состава. 2 з.п. ф-лы, 3 табл., 3 пр.

2463254
выдан:
опубликован: 10.10.2012
СПОСОБ ПОЛУЧЕНИЯ ГЕТЕРОЯДЕРНЫХ АЦЕТАТОВ ПАЛЛАДИЯ С ЦВЕТНЫМИ МЕТАЛЛАМИ

Изобретение относится к области химии платиновых металлов, в частности синтезу соединений палладия, а именно синтезу гетероядерных ацетатов палладия с цветными металлами. Способ получения гетероядерных ацетатов палладия с цветными металлами включает взаимодействие ацетатного соединения палладия и соединения цветного металла в растворе ледяной уксусной кислоты, где взаимодействие соединений, взятых в мольном соотношении палладий: цветной металл - 1:(0,90-0,97), проходит в ледяной уксусной кислоте, использованной в количестве (600-800)% от мольного количества палладия, при температуре (70-90)°C с испарением растворителя до влажного или сухого остатка, с повторным добавлением ледяной уксусной кислоты, в количестве (200-600)% от мольного количества палладия, повторного испарения растворителя при температуре (80-120)°С, с обработкой сухого остатка, предварительно подогретым до (70-90)°С, раствором смеси бензола или толуола и ангидрида уксусной кислоты при их объемном соотношении (4-8):1 соответственно, при количестве ангидрида уксусной кислоты (20-60)% от мольного количества палладия, при температуре (70-100)°С в течение (2-30) минут, охлаждении полученной суспензии до температуры (40-70)°С и отфильтровыванием целевого соединения. Способ согласно другому варианту включает взаимодействие ацетата палладия и ацетатного соединения цветного металла в растворе ледяной уксусной кислоты с испарением растворителя, где взаимодействие соединений, взятых в мольном соотношении палладий: цветной металл - 1:(0,90-0,97), проходит в ледяной уксусной кислоте, использованной в количестве (400-600)% от мольного количества палладия, при температуре (80-120)°C с испарением растворителя до сухого остатка, с его последующей обработкой, предварительно подогретым до (70-90)°С, раствором смеси бензола или толуола и ангидрида уксусной кислоты при их объемном соотношении (4-8):1 соответственно при количестве ангидрида уксусной кислоты (20-60)% от мольного количества палладия, при температуре (70-100)°С в течение (2-30) минут, охлаждении полученной суспензии до температуры (40-70)°С и отфильтровыванием целевого соединения. Изобретение позволяет реализовать простой и стабильный способ получения целевых соединений с высоким выходом. 2 н. и 2 з.п. ф-лы, 2 пр., 2 табл.

2458039
выдан:
опубликован: 10.08.2012
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНОГО ТИТАНАТА НИКЕЛЯ

Изобретение может быть использовано в химической, полупроводниковой промышленности. Способ получения нанодисперсного титаната никеля включает приготовление эквимолярной смеси нанодисперсного диоксида титана с обезвоженной солью никеля, последующий нагрев этой смеси до температуры синтеза титаната никеля и выдержку при этой температуре. В качестве диоксида титана используют диоксид титана анатазной модификации, полученный по хлоридной технологии, с температурой начала полиморфного превращения анатаз-рутил выше температуры синтеза титаната никеля. В качестве соли никеля используют нитрат никеля, а выдержку эквимолярной смеси осуществляют в диапазоне температур 820-880°С в течение не менее 1 часа. Изобретение позволяет получить однородный по размеру частиц нанодисперсный титанат никеля, снизить энергоемкость процесса. 1 табл.

2457182
выдан:
опубликован: 27.07.2012
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО NiО/C МАТЕРИАЛА

Изобретение относится к области электрохимической энергетики, а именно к приготовлению активной массы электрода с наноразмерными частицами NiO на углеродном носителе, используемого в химических источниках тока, в частности в никель-металл-гидридных аккумуляторах, а также в суперконденсаторах. Способ получения композиционного NiO/C материала, содержащего 15-60% NiO и представляющего собой равномерно распределенные по поверхности углеродного носителя кристаллиты -NiO со средним размером 2-5 нм, основан на получении наночастиц NiO в результате электрохимического окисления и разрушения двух никелевых электродов в растворах гидроксидов щелочных металлов концентрацией 2 моль/л под действием переменного тока частотой 50 Гц при средней величине тока, отнесенной к единице площади поверхности электродов, равной 0,3-1,5 А/см2, с одновременным осаждением образующихся наночастиц оксида никеля на углеродный носитель, последующем фильтровании полученной суспензии, промывке композита дистиллированной водой с его сушкой при 80°С в течение 1 часа. Изобретение позволяет повысить качество получаемого материала за счет отсутствия примесей и снизить расходы на его получение. 4 пр.

2449426
выдан:
опубликован: 27.04.2012
УСТРОЙСТВО И СПОСОБ ПОЛУЧЕНИЯ СОЕДИНЕНИЙ ПУТЕМ ОСАЖДЕНИЯ

Изобретение относится к устройству и способу получения соединений в результате выпадения из раствора в осадок твердых веществ. Устройство содержит реактор, оснащенный наклонным отстойником. Способ включает смешивание растворов исходных веществ в реакторе, осаждение соединений в реакционной зоне, частичное отделение маточного щелока от осажденного продукта в наклонном отстойнике, отбор суспензии продукта, его фильтрование и сушку. Изобретение относится также к порошкообразному смешанному гидроксиду никель-кобальта с ВЕТ-поверхностью менее 20 м2/г и ударной плотностью больше 2,4 г/см3. Технический результат состоит в получении суспензии продукта осаждения, концентрация в которой выше стехиометрической концентрации. 4 н. и 25 з.п. ф-лы, 13 ил.

2437700
выдан:
опубликован: 27.12.2011
СПОСОБ ПОЛУЧЕНИЯ КАРБОНИЛА НИКЕЛЯ

Изобретение относится к способу получения карбонила никеля. Способ реализуется при синтезе карбонила никеля среднего давления с помощью вращающегося с малым наклоном реактора синтеза металлоорганических соединений. В реакционную камеру реактора загружают исходный сыпучий материал. Корпус реактора устанавливают с заданным наклоном и приводят во вращение относительно его продольной оси. Внутреннюю полость реактора промывают азотом. В реактор закачивают оксид углерода до давления 50-70 атм. Включают циркуляционный компрессор, обеспечивающий движение оксида углерода через реактор. В теплообменник, расположенный внутри реакционной камеры реактора, подают теплоноситель и исходный сыпучий материал разогревают до желательной температуры. Синтез карбонила никеля проводят при давлении оксида углерода в реакционной камере 50-70 атм и механическом перемешивании сыпучего материала в присутствии оксида углерода. Перемешивание сыпучего материала осуществляют средством для перемешивания, конструктивно совмещенным с теплообменником. Одновременно с перемешиванием транспортируют сыпучий материал от одного конца реакционной камеры к другому с обеспечением циркуляции сыпучего материала по замкнутому контуру во внутренней полости реактора. После нагрева исходного сыпучего материала до желательной температуры в теплообменник вместо теплоносителя подают хладагент. Далее поддерживают температуру в реакционной камере 170-220°С. В случае падения температуры в реакционной камере в теплообменник вместо хладагента вновь подают теплоноситель. В процессе реакции синтеза продукт реакции отводят из внутренней полости реактора с одновременной фильтрацией с помощью фильтроэлементов пыли из отводимого продукта реакции и удержанием в реакционной камере сыпучего материала, не вступившего в реакцию. После прекращения реакции синтеза снижают давление в реакционной камере до атмосферного, осуществляют продувку фильтроэлементов азотом, обезвреживают твердые остатки сыпучего материала в реакционной камере реактора, после чего твердые остатки сыпучего материала выгружают из реакционной камеры. Обеспечивается повышение эффективности синтеза карбонила никеля. 9 з.п. ф-лы, 8 ил.

2423320
выдан:
опубликован: 10.07.2011
РЕАКТОР СИНТЕЗА МЕТАЛЛООРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Изобретение может быть использовано для получения карбонильных соединений металлов. Внутри цилиндрического герметичного корпуса расположена кольцевая перегородка, образующая первый и второй отсеки. Корпус установлен с возможностью вращения относительно наклонной продольной оси. Средство транспортирования сыпучего материала обеспечивает его циркуляцию по замкнутому контуру и выполнено в виде соосно установленного в корпусе реактора барабана с наружной и внутренней обечайками, полость между которыми перекрыта торцевыми кольцевыми элементами. На внутренней поверхности наружной обечайки барабана расположен первый многозаходный шнек. Внутренняя обечайка барабана на концевых участках имеет окна для ввода-вывода сыпучего материала. По периметру внутренней обечайки барабана на ее поверхности смонтировано совмещенное с теплообменником средство для перемешивания сыпучего материала. Трубная доска с металлокерамическими фильтроэлементами установлена внутри второго отсека с образованием пылевой и конечной камер. В пылевой камере на внутренней поверхности корпуса реактора расположен второй многозаходный шнек, один конец которого примыкает к трубной доске, а другой - сопряжен с кольцевой перегородкой с возможностью перемещения отфильтрованной из отводимого продукта реакции пыли внутрь первого отсека. Направление навивки направляющих элементов противоположно направлению вращения корпуса реактора при проведении реакции синтеза. Обеспечивается повышение эффективности работы и расширение эксплуатационных возможностей реактора. 8 з.п. ф-лы, 8 ил.

2393009
выдан:
опубликован: 27.06.2010
НЕОРГАНИЧЕСКИЙ ПИГМЕНТ НА ОСНОВЕ МОЛИБДАТА

Изобретение может быть использовано в лакокрасочной промышленности, производстве керамики, пластмасс, строительных материалов. Неорганический пигмент на основе молибдата, влючающего щелочной металл, представляет собой двойной молибдат состава Me2Ni2(MoO4)3, где Me=Li, Na, К, Rb, Cs (1), или Me2Ni(MoO4 )2, где Ме=К, Rb (2),

или Na3,86 Ni1,07(MoO4)3 (3). Изобретение позволяет получить экологически безопасные, химически устойчивые и недорогие пигменты желтого цвета, обладающие высокой термической стабильностью на воздухе. 1 ил., 1 табл.

2369621
выдан:
опубликован: 10.10.2009
СПОСОБ ПЕРЕРАБОТКИ РАСТВОРОВ, СОДЕРЖАЩИХ НИКЕЛЬ И ПРИМЕСИ МЕТАЛЛОВ

Изобретение может быть использовано при переработке отработанных никельсодержащих кислых растворов, образующихся при электролитическом рафинировании меди. Способ переработки водных растворов, содержащих сульфат никеля, серную кислоту и примеси, включает трехстадийную нейтрализацию растворов соединениями кальция, такими как известковое молоко и мел. Первую стадию нейтрализации ведут при рН 1,8-2,0, вторую стадию нейтрализации ведут при рН 5-6, а третью - при рН более 8,5. Изобретение позволяет упростить получение товарных продуктов из отработанных никельсодержащих кислых растворов. 2 з.п. ф-лы, 1 ил., 3 табл.

2363661
выдан:
опубликован: 10.08.2009
СПОСОБ КОМПЛЕКСНОЙ ПЕРЕРАБОТКИ СЕРПЕНТИНИТА

Изобретение относится к области металлургии и химической технологии неорганических веществ. Согласно изобретению серпентинит выщелачивают соляной кислотой, суспензию фильтруют с получением хлормагниевого раствора и диоксида кремния. Хлормагниевый раствор очищают от примесей нейтрализацией с получением железоникелевого концентрата. Из очищенного хлормагниевого раствора и отработанного электролита синтезируют карналлит, его обезвоживают и подвергают электролизу с получением магния, хлора и отработанного электролита. Железоникелевый концентрат выщелачивают 10-15%-ной соляной кислотой при температуре 80°С до рН 3-5, суспензию фильтруют с получением железосодержащего осадка и раствора, содержащего хлорид никеля. Из раствора, содержащего хлорид никеля, выделяют соединения никеля обработкой раствором гидроксида натрия при рН 8,0-8,5, осадок промывают от водорастворимых солей - хлоридов, сушат и прокаливают с получением никелевого концентрата. Изобретение позволяет повысить концентрацию оксида никеля в никелевом концентрате. 1 з.п. ф-лы, 1 табл.

2356836
выдан:
опубликован: 27.05.2009
СПОСОБ ПОЛУЧЕНИЯ ПРЕПАРАТА РАДИОНУКЛИДА НИКЕЛЯ-63

Изобретение относится к области радиохимии и может быть использовано для получения препарата радионуклида никеля-63. В способе получения препарата радионуклида никеля-63 гексааминперхлорат никеля Ni(NH 3)6(ClO4) 2 обрабатывают аммиачным раствором иодидов натрия или аммония, термически разлагают образовавшиеся соединение до оксида никеля и растворяют его в минеральной кислоте. Изобретение позволяет снизить трудоемкость получения препарата радионуклида никеля-63. 2 з.п. ф-лы, 1 ил.

2344084
выдан:
опубликован: 20.01.2009
СПОСОБ ВЫДЕЛЕНИЯ НИКЕЛЯ ИЗ АММИАЧНЫХ РАСТВОРОВ

Изобретение относится к области радиохимии и может быть использовано в препаративной химии, технологии выделения никеля из промышленных отходов. Никель осаждают путем введения в аммиачный раствор никеля хлорида щелочного металла или аммония до конечной концентрации хлорида щелочного металла или аммония более 1 моль/л. Маточный раствор отделяют от осадка и промывают осадок этиловым спиртом. Предложенное изобретение позволяет выделить никель и очистить его от меди и цинка. 1 ил.

2327644
выдан:
опубликован: 27.06.2008
СПОСОБ ОЧИСТКИ НИКЕЛЯ-63 ОТ МЕДИ

Изобретение относится к области радиохимии и может быть использовано для очистки препарата радионуклида никеля-63 от меди при выделении никеля-63 из облученных медных мишеней, а также в аналитической химии. Способ заключается в том, что осаждают иодид одновалентной меди из азотнокислого раствора, содержащего медь и никель-63, в интервале кислотности 1·10-5-3 моль/л, добавлением избытка смеси иодида и сульфита щелочного металла. Отделяют осадок от маточного раствора, промывают осадок, маточный и промывной растворы объединяют, к объединенному раствору добавляют аммиак и осаждают никель из аммиачного раствора добавлением в него иодида щелочных металлов или аммония. Технический результат: увеличение степени очистки никеля-63 от меди. 3 табл.

2323885
выдан:
опубликован: 10.05.2008
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАГИДРАТА СУЛЬФАТА НИКЕЛЯ-АММОНИЯ

Изобретение может быть использовано для получения гексагидрата сульфата никеля-аммония и для извлечения никеля(II) из токсичных отходов производства. Готовят реакционный водный раствор с рН от -0,5 до 8,0, содержащий никель(II), 3-15 мас.% аммония и 8-45 мас.% сульфата. В качестве источника никеля(II) используют отработанный раствор химического никелирования. Отработанный раствор в качестве основных компонентов может содержать, например, никель(II), гипофосфит натрия, фосфит натрия, уксусную кислоту, ацетат натрия или никель(II), гипофосфит натрия, фосфит натрия, уксусную кислоту, сульфат аммония. Отработанный раствор химического никелирования можно сконцентрировать упариванием. Кристаллизацию целевого продукта из реакционного раствора ведут при температуре от -5 до 40°С. Изобретение позволяет снизить материальные затраты на получение гексагидрата сульфата никеля-аммония, повысить его выход, извлечь более 99% никеля(II) из отходов производства. 15 з.п. ф-лы.

2310610
выдан:
опубликован: 20.11.2007
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА НИКЕЛЬ/ФОСФОРСОДЕРЖАЩЕГО ЛИГАНД ДЛЯ ГИДРОЦИАНИРОВАНИЯ

Данное изобретение относится к способу получения катализатора гидроцианирования, который представляет собой комплекс никеля с бидентатным фосфорсодержащим соединением. Способ получения включает взаимодействие, по меньшей мере, одного бидентатного фосфорсодержащего лиганда, выбранного из группы, состоящей из бидентатных фосфитов, бидентатных фосфинитов и бидентатных фосфинов, с хлоридом никеля в присутствии нитрильного растворителя и восстанавливающего металла. Восстанавливающий металл является более электроположительным чем никель и может быть выбран из группы, состоящей из Na, Li, К, Mg, Са, Ва, Sr, Ti, V, Fe, Со, Cu, Zn, Cd, Al, Ga, In и Sn. Хлорид никеля присутствует в молярном избытке относительно восстанавливающего металла. Катализатор получают предпочтительно при температуре от 30 до 100°С и давлении от 34 до 340 кПа. Технический результат - снижение температуры реакции и уменьшение образования побочных продуктов. 15 з.п. ф-лы.

2301704
выдан:
опубликован: 27.06.2007
СПОСОБ ПЛАКИРОВАНИЯ ГИДРООКИСЬЮ КОБАЛЬТА ЧАСТИЦ ГИДРАТА ЗАКИСИ НИКЕЛЯ

Изобретение относится к области цветной металлургии и может быть использовано в аккумуляторной промышленности. Способ заключается в осаждении на поверхности гидрата закиси никеля альфа-гидроокиси кобальта и в последующем осаждении бета-гидроокиси кобальта путем регулирования рН при подаче щелочного реагента в раствор, содержащий соль кобальта и комплексообразователь. При осаждении альфа-гидроокиси кобальта поддерживают значение рН равным 9-10,5, а бета-гидроокиси кобальта рН равным 11,5-12,5. В качестве комплексообразователя используют водорастворимые аминокислоты или их соли, имеющие константы нестойкости комплексных соединений с кобальтом в интервале 10-(6-20), вводимые в количестве, обеспечивающем их содержание 0,05-0,1 м/л. Предложенный способ позволяет упростить процесс и получить равномерное покрытие гидроокиси кобальта на поверхности частиц гидрата закиси никеля. 1 з.п. ф-лы, 1 ил.

2242426
выдан:
опубликован: 20.12.2004
СПОСОБ ПОЛУЧЕНИЯ МЕЛКОДИСПЕРСНОГО ПОРОШКА ТВЕРДЫХ РАСТВОРОВ ГИДРОКСИДОВ НИКЕЛЯ И КОБАЛЬТА И ПРОДУКТ ДЛЯ ЭЛЕКТРОХИМИЧЕСКИХ ПРОИЗВОДСТВ, ПОЛУЧАЕМЫЙ ПО ЭТОМУ СПОСОБУ

Изобретение относится к области технологии неорганических и электрохимических производств, конкретно к способам получения порошков для заполнения электродных ячеек никелевых аккумуляторов электрохимических элементов, а также к технологии производства катализаторов. Мелкодисперсные твердые растворы гидроксидов никеля и кобальта получают путем взаимодействия их эвтектической смеси нитратов никеля и кобальта, взятых в соотношении от 30:1 до 10:1 с гидроксидом аммония при скорости подачи реагентов от 1 мол/мин до 50 мол/мин и временном градиенте температур до 20/с. Образовавшийся порошковый твердый раствор - продукт для электрохимических производств отличается тригональной структурой, содержанием гидроксида кобальта в нем до 10 мас.% и высокой удельной поверхностью до 25103 см2/г. Техническим результатом является получение принципиально новой технологии получения электрохимически активного гидроксида никеля с регулируемой добавкой гидроксида кобальта в виде мелкодисперсных зерен твердого раствора. 2 с.п. ф-лы, 1 табл.
2226179
выдан:
опубликован: 27.03.2004
СПОСОБ ОЧИСТКИ ПРЕПАРАТА РАДИОНУКЛИДА НИКЕЛЯ-63

Изобретение относится к радиохимии. Способ очистки препарата радионуклида никеля-63 заключается в получении раствора его нитрата, содержащего аммиак с концентрацией не менее 4 моль/л. В раствор вводят нитрат железа (III) в количестве, соответствующем массовому отношению Fe:Ni=0,01-0,03. Отделяют раствор от осадка. 63Ni осаждают в присутствии пероксида водорода с концентрацией 0,01-0,1 моль/л в виде перхлората гексамминникеля. Для этого вводят перхлорат натрия или аммония при соотношении молярных концентраций перхлорат-ионов и никеля в интервале 10-20. Отделяют маточный раствор от осадка. Промывают осадок раствором с концентрациями в нем аммиака не менее 4 моль/л, перхлорат-ионов 0,5-2 моль/л, пероксида водорода 0,01-0,1 моль/л с последующим отделением промывного раствора. Осадок растворяют в азотной кислоте с концентрацией 0,5-2 моль/л при молярном соотношении количеств кислоты и никеля 8-10. 63Ni сорбируют из полученного раствора на сильнокислом катионите Dowex-50. Сорбент последовательно промывают водой и раствором соляной кислоты с концентрацией 0,3-0,5 моль/л. Десорбируют Ni раствором соляной кислоты с концентрацией 4-6 моль/л. Способ позволяет очистить 63Ni от присутствующих в материале помимо радионуклидов кобальта радиоактивных примесей цезия, бария, европия, церия, рутения, йода, серебра, ниобия, хрома, марганца. 5 табл.
2219133
выдан:
опубликован: 20.12.2003
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА НИКЕЛЯ (II)

Изобретение относится к химии и может быть использован в электротехнической промышленности, а также в производстве эмалей, стекла и для синтеза других соединений никеля. Гидроксид никеля (II) осаждают введением кристаллического сульфата никеля шести- или семиводного в 15-30%-ный раствор гидроксида натрия при 65-80oС до Т:Ж=1:(4-7). Полученную пульпу обрабатывают в колонне в режиме противотока при линейной скорости восходящего потока 5-8 м/ч и 45-70oС с наложением пульсационных возмущений последовательно 3-5%-ным раствором щелочи, а затем водой. Затем осадок гидроксида никеля (II) отжимают на центрифуге, сушат в электромагнитном поле СВЧ и просеивают. Способ прост, исключает длительные, трудоемкие и энергоемкие операции отделения маточного раствора, гидротермальной обработки и многократной отмывки конечного продукта от примесей. Получаемый гидроксид никеля (II) обладает повышенной электрохимической активностью, что позволяет на 10-15% повысить емкость изготовленных при его использовании щелочных аккумуляторов. Продукт не содержит макропримесей бария и кобальта, имеет достаточно низкое содержание сульфатов, хлоридов, железа, меди, кремния. 4 з.п.ф-лы, 3 табл.
2208585
выдан:
опубликован: 20.07.2003
ПОРОШКОВЫЙ ГИДРОКСИД НИКЕЛЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к области химической технологии, конкретно к материалам на основе гидроксида никеля, используемого в электрохимических элементах. Порошковый гидроксид никеля имеет индекс рентгенокристалличности больше 1 с концентрацией аморфной фазы, близкой к нулю, для мелкокристаллических сфероидных зерен зеленого цвета со средним диаметром dср=10 - 12 мкм, с дисперсией распределения зерен =4-8 и удельной емкостью 0,265 Ач/г. Порошковый гидроксид никеля получают путем взаимодействия гексагидрата нитрата никеля, нагреваемого в его кристаллизационной воде при температуре выше 60oС со смесью гидроксидов КОН и LiOH с плотностью =1,10-1,35 г/см3 при рН 10,05-12,5 в течение 5-30 мин с последующим отжатием полученного осадка на нутч-фильтре и многократной его отмывкой раствором ацетата калия, после чего полученный продукт обрабатывают в вакууме при температуре 80-110oС при давлении р= 1-10 Па в течение 0,5-1 ч с последующим просеиванием полученного продукта. Изобретение позволяет уменьшить дисперсию порошка при сфероидной форме зерен, повысить кристалличность продукта при отсутствии рентгеноаморфной фазы, снизить адсорбционную активность по отношению к микропримесям металлов Na, K, Mg. 2 c. и 1 з.п. ф-лы, 2 табл.
2207322
выдан:
опубликован: 27.06.2003
ГИДРАТ ЗАКИСИ НИКЕЛЯ

Изобретение относится к электрохимии, в частности к составам гидрата закиси никеля, применяемым в производстве химических источников тока. Гидрат закиси никеля для химических источников тока имеет определенный гранулометрический состав и кристаллическую структуру на основе никеля и ОН-группы. Он содержит активные добавки, примеси и воду. В качестве активных добавок гидрат закиси никеля содержит кобальт, цинк, кальций, магний, алюминий и медь при следующем содержании элементов, мас.%: гидрат закиси никеля 82,0-97,9; кобальт 0,5-10; цинк 0,01-4,5; кальций 0,04-1,5; магний 0,002-0,5; алюминий 0,005-3,0; медь 0,01-1,5; примеси 0,8-0,02; вода 0,1-2. Гидрат закиси никеля имеет форму сферических частиц размерами 0,5-30 мкм с дендритной поверхностью. Технический результат изобретения - увеличение электропроводности гидрата закиси никеля и снижение его себестоимости. 1 табл.
2198845
выдан:
опубликован: 20.02.2003
НАНОСТРУКТУРНЫЕ ОКИСИ И ГИДРООКИСИ И СПОСОБЫ ИХ СИНТЕЗА

Изобретение относится к получению наноструктурных материалов химическим путем. Способ включает распыление раствора реагента в предшествующий раствор для образования осадка наноструктурной окиси или гидроокиси. Осадок затем подвергается тепловой обработке с последующей обработкой ультразвуком или обработке ультразвуком с последующей тепловой обработкой. Этот способ дает наноструктурную легированную и нелегированную гидроокись никеля, двуокись марганца и стабилизированную иттрием окись циркония. Могут быть получены необычные морфологические суперструктуры, включая ясно различимые цилиндры или наностержни, а также новые структуры для гидроокиси никеля и двуокиси марганца, включающие сборки наноструктурных волокон, сборки наноструктурных волокон и агломераты наноструктурных частиц и сборки наноструктурных волокон и наноструктурные частицы. Эти новые структуры имеют высокие скорости перколяции и высокую плотность активных центров, что делает их особенно подходящими для изготовления катализаторов. 8 с. и 58 з.п. ф-лы, 1 табл., 17 ил.
2194666
выдан:
опубликован: 20.12.2002
СПОСОБ ПОЛУЧЕНИЯ СФЕРИЧЕСКОГО ГИДРАТА ЗАКИСИ НИКЕЛЯ

Изобретение относится к цветной металлургии и может быть использовано для получения сферического гидрата закиси никеля, используемого в аккумуляторной промышленности. Способ включает операцию приготовления раствора, содержащего соль никеля и комплексообразователь. В качестве комплексообразователя используется оборотный раствор аминокислоты. Синтез гидрата закиси никеля проводят из полученного раствора при подаче туда щелочного реагента. Регенерацию раствора аминокислоты осуществляют выпаркой раствора, полученного после отделения гидрата закиси никеля и отделения выделившихся солей. Способ позволяет упростить и удешевить процесс получения сферического гидрата закиси никеля, отказаться от использования токсичного аммиака. 5 з.п. ф-лы.
2193014
выдан:
опубликован: 20.11.2002
СПОСОБ ПОЛУЧЕНИЯ ГИДРОКСИДА НИКЕЛЯ (II)

Изобретение относится к области получения соединений никеля, а именно его гидроксидов, и может быть использовано при производстве щелочных аккумуляторов. Способ включает получение раствора, содержащего ионы никеля и кислотный остаток, взаимодействием полученного раствора с гидроксидом щелочного металла с последующим отделением образовавшегося осадка и доведением его до товарной кондиции. Исходный раствор получают путем взаимодействия соляной кислоты, сульфида никеля и окислителя. Количество щелочного металла в реакционной смеси после прохождения реакции составляет 4-10 г/л. Сушку целевого продукта осуществляют до влажности 20-25%. Технический результат - увеличение выхода годного и снижение производственных затрат.
2191160
выдан:
опубликован: 20.10.2002
Наверх