Наноструктуры; их изготовление или обработка – B82B

МПКРаздел BB82B82B
Раздел B РАЗЛИЧНЫЕ ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ; ТРАНСПОРТИРОВАНИЕ
B82 Нанотехнология
B82B Наноструктуры; их изготовление или обработка

B82B 1/00 Наноструктуры
B82B 3/00 Изготовление или обработка наноструктур

Патенты в данной категории

МНОГОСЛОЙНЫЙ НЕТКАНЫЙ МАТЕРИАЛ С ПОЛИАМИДНЫМИ НАНОВОЛОКНАМИ

Изобретение относится к медицине, конкретно к области нетканых материалов, предназначенных для изготовления одноразовых изделий медицинского и санитарно-гигиенического назначения, фильтровальных материалов. Описан нетканый материал, который состоит из нескольких слоев и включает скрепленные между собой путем точечного склеивания подложку с полиамидными нановолокнами, содержащими по меньшей мере одно антимикробное вещество, и защитный слой. Полиамидные нановолокна изготовлены из полиамида и могут быть фиксированы на подложке с помощью жидкого адгезива. В качестве подложки для нановолокон и защитного слоя используются нетканые волокнистые материалы с плотностью от 15 до 90 г/м2: полипропиленовый, полиэфирный, целлюлозно-полиэфирный, целлюлозный или бумага. Полиамидные нановолокна содержат по меньшей мере одно антимикробное вещество в количестве от 0,4 до 35% от массы нановолокон из ряда: гуанидины, наночастицы металлов, стабилизированные соли серебра, соли четвертичных аммониевых оснований. Материал обладает антимикробной активностью до 100%, высокой воздухопроницаемостью до 1300 л/м 2ч, устойчив к разрывным нагрузкам. 8 з.п. ф-лы, 2 ил., 5 пр.

2529829
выдан:
опубликован: 27.09.2014
МАТЕРИАЛ ЗАМЕНИТЕЛЯ КОСТНОЙ ТКАНИ

Изобретение относится к медицине. Описан двухфазный материал заменителя костной ткани на основе фосфата кальция / гидроксиапатита (САР/НАР), включающий ядро из спеченного CAP и как минимум один равномерный и закрытый эпитаксически нарастающий слой нанокристаллического НАР, нанесенный сверху на ядро из спеченного CAP, причем эпитаксически нарастающие нанокристаллы имеют такой же размер и морфологию, что и у минерала костей человека, то есть длину от 30 до 46 нм и ширину от 14 до 22 нм. Описан также способ получения материала заменителя костной ткани на основе САР/НАР, включающий этапы: а) изготовления ядра из спеченного материала CAP, b) погружения ядра из спеченного материала CAP в водный раствор при температуре от 10°С до 50°С для запуска процесса преобразования CAP в НАР, при помощи которого на поверхности ядра из спеченного материала CAP образуется равномерный и закрытый эпитаксически нарастающий слой нанокристаллического гидроксиапатита, причем эпитаксически нарастающие нанокристаллы имеют такие же размер и морфологию, что и у минерала костей человека, с) прекращения преобразования путем отделения твердого материала от водного раствора при наличии равномерного и закрытого покрытия из как минимум одного нанокристаллического слоя НАР, но до полного завершения процесса преобразования, d) необязательной стерилизации отделенного материала с этапа с), и применения вышеупомянутого материала заменителя костной ткани в качестве имплантата или протеза для остеогенеза, регенерации костей, восстановления костей и/или реплантации костей в месте повреждения у человека или животного. 4 н. и 11 з.п. ф-лы, 3 табл., 6 пр.

2529802
выдан:
опубликован: 27.09.2014
НАНОКОМПОЗИТНЫЙ МАТЕРИАЛ С СЕГНЕТОЭЛЕКТРИЧЕСКИМИ ХАРАКТЕРИСТИКАМИ

Изобретение относится к наноструктурированным материалам с сегнетоэлектрической активностью. Технический результат заключается в получении сегнетоэлектрического материала с высокими и регулируемыми диэлектрическими и пироэлектрическими характеристиками. Нанокомпозитный материал с сегнетоэлектрическими свойствами содержит в качестве связующего вещества кремнезем SiO2, а в качестве сегнетоактивного вещества соль триглицинсульфата (NH2CH2 COOH)3·H2SO4 при следующем соотношении компонентов, мас.%: SiO2 - 56-75, триглицинсульфат - 25-44. Материал имеет зернистую структуру с размерами зерен от 50 до 80 нм. 2 ил., 5 пр.

2529682
выдан:
опубликован: 27.09.2014
КАТАЛИЗАТОР ЦИКЛИЗАЦИИ НОРМАЛЬНЫХ УГЛЕВОДОРОДОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ (ВАРИАНТЫ)

Группа изобретений относится к катализаторам циклизации нормальных парафиновых углеводородов. Катализатор содержит носитель, который готовят с использованием высококремнеземного цеолита KL и бемита, а каталитически активное вещество представляет собой как иммобилизованные на поверхности катализатора кристаллиты платины, так и локализованные внутри канала цеолита частицы платины, характеризующиеся размером 0,6-1,2 нм. Размер частиц бемита не более 45 мк. Размер частиц цеолита не более 0,2 мм. Соотношение ингредиентов находится в следующих пределах (мас.%): платина - 0,3-0,8; бемит - 19,9-59,5; цеолит KL - 79,8-39,7. Катализатор может дополнительно содержать оксидный и/или металлический промотор, выбранный из металлов: Sn, In, Ir, Re, Ba. Группа изобретений также включает способы получения катализаторов, включающие приготовление гранулированного носителя на основе цеолита и гидроксида алюминия и нанесение платины на носитель. 4 н.п. ф-лы, 1 табл., 6 пр.

2529680
выдан:
опубликован: 27.09.2014
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ ПЕРЕМЕЩЕНИЯ ДВИЖУЩИХСЯ ОБЪЕКТОВ ОТ ВЗАИМОДЕЙСТВИЯ ПОВЕРХНОСТНО-АКТИВНОГО ВЕЩЕСТВА СО СЛОЕМ ЖИДКОСТИ НАД ДИСПЕРСНЫМ МАТЕРИАЛОМ

Изобретение относится к области оценки свойств дисперсных материалов и может быть использовано для разработки энергетических нанотехнологий в разных отраслях промышленности и областях знаний, а также для разработки и управления самоорганизующихся систем, открывает возможности для изучения новых принципов построения технических устройств. Для установления дальности перемещения движущихся объектов, направления их перемещения, определения количества и размеров частиц в секторах ограничительной окружности используют объект-препарат из бумаги с нанесенной на нее ограничительной линией шириной 5-6 мм в виде окружности с помеченным центром, направлением расположения видеокамеры и разбитой на сектора тонкими линиями окружности из гидрофобного материала. При этом в помеченном центре ограничительной окружности размещают шаблон, в который помещают дисперсный материал. Затем в ограничительную окружность вносят изучаемую жидкость в количестве, обеспечивающем толщину слоя жидкости над изучаемым материалом. Далее подводят его к центру капилляр на высоте 1-6 мм, содержащий поверхностно-активное вещество, включают видеокамеру на фиксирование изменений поверхности. После завершения процесса перемещения самоорганизующихся объектов на поверхности изучаемого материала видеокамеру отключают, пластину с объектом-препаратом и изучаемым материалом внутри шаблона оставляют высыхать, не сливая воду с поверхности объекта-препарата. Затем с помощью микроскопа определяют в каждом секторе количество частиц и их размеры возле ограничительной окружности, по которым определяют, в каком направлении объекты преимущественно перемещались и примерный состав движущихся объектов. Техническим результатом является обеспечение возможности установления дальности перемещения движущихся объектов, направления их перемещения, определения количества и размеров частиц в секторах ограничительной окружности. 9 ил., 4 пр.

2529657
выдан:
опубликован: 27.09.2014
СПОСОБ КОМБИНИРОВАННОЙ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ ЗАГОТОВОК

Изобретение относится к области обработки давлением и может быть использовано для получения нанокристаллических заготовок металлов и сплавов с улучшенными физико-механическими свойствами. Производят равноканальное угловое прессование цилиндрической заготовки. При этом в металле заготовки формируют ультрамелкозернистую структуру с размером зерна 200-300 нм. Затем заготовку разрезают на диски, каждый из которых подвергают интенсивной пластической деформации кручением при помощи двух вращающихся бойков. Деформацию кручением проводят при комнатной температуре под давлением 4-6 ГПа при количестве оборотов бойков n 2. При этом обеспечивают формирование однородной нанокристаллической структуры с размером зерна 100 нм. В результате улучшаются физико-механические свойства обрабатываемого металла. 1 з.п. ф-лы, 1 табл., 1 пр.

2529604
выдан:
опубликован: 27.09.2014
МНОГОСЛОЙНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ

Изобретение относится к средствам для защиты от электромагнитных полей электротехнических и электронных устройств и биологических объектов и может использоваться для создания электромагнитных экранов и безэховых камер. Композиционный материал для защиты от электромагнитного излучения состоит из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, отличается тем, что он представляет собой многослойную конструкцию, каждый слой которой выполнен из указанного состава, а содержание частиц сплава в каждом слое составляет 70-90 мас.% и ограничено определенным диапазоном размеров частиц из непрерывного ряда 1-200 мкм с увеличением размерности частиц в каждом последующем слое. Техническим результатом изобретения является увеличение рабочего диапазона частот материала от 100 МГц до 10 ГГц с сохранением низких значений коэффициента отражения и высоких значений магнитной проницаемости. 2 з.п. ф-лы, 1 табл., 2 ил., 2 пр.

2529494
выдан:
опубликован: 27.09.2014
СПОСОБ ФОРМИРОВАНИЯ НАНОРАЗМЕРНЫХ СТРУКТУР

Способ формирования наноразмерных структур предназначен для получения полосок тонких пленок наноразмерной ширины с целью их исследования и формирования элементов наноэлектромеханических систем (НЭМС).

Сущность изобретения заключается в том, что в способе формирования наноразмерных структур, включающем получение заготовок тонких пленок и выделение из них полосок тонких пленок, по меньшей мере, одну заготовку тонкой пленки закрепляют внутри заполненного объема, который устанавливают в держатель микротома таким образом, чтобы плоскость заготовки тонкой пленки оказалась непараллельна плоскости реза, после этого ножом осуществляют рез заполненного объема с, по меньшей мере, одной заготовкой тонкой пленки и получение плоского фрагмента с полоской тонкой пленки.

Существуют варианты, в которых заполненный объем устанавливают в держателе микротома таким образом, чтобы плоскость заготовки тонкой пленки оказалась перпендикулярна плоскости реза и перпендикулярна направлению реза; или заполненный объем устанавливают в держателе микротома таким образом, чтобы плоскость заготовки тонкой пленки оказалась перпендикулярна плоскости реза и параллельна направлению реза.

Существуют также варианты, в которых после осуществления реза проводят исследование зондом сканирующего зондового микроскопа поверхности заполненного объема с, по меньшей мере, одной заготовкой тонкой пленки; или производят модификацию заготовки тонкой пленки, расположенной внутри заполненного объема.

Существуют также варианты, в которых модификация заготовки тонкой пленки заключается в механическом воздействии на нее зондом; или в электрическом воздействии на нее зондом; или в электрохимическом воздействии на нее зондом; или в воздействии на нее электронным пучком; или в воздействии на нее ионным пучком; или в воздействии на нее рентгеновским пучком; или в воздействии на нее пучком альфа-частиц; или в воздействии на нее пучком протонов; или в воздействии на нее пучком нейтронов.

Существует также вариант, в котором внутри заполненного объема закрепляют набор заготовок тонких пленок; при этом заготовки тонких пленок расположены параллельно друг другу.

Существует также вариант, в котором в качестве тонких пленок используется графен.

Все перечисленные варианты способа расширяют его функциональные возможности. 16 з.п. ф-лы, 5 ил.

2529458
выдан:
опубликован: 27.09.2014
СПОСОБ БЕСКОНТАКТНОГО ОПРЕДЕЛЕНИЯ УСИЛЕНИЯ ЛОКАЛЬНОГО ЭЛЕКТРОСТАТИЧЕСКОГО ПОЛЯ И РАБОТЫ ВЫХОДА В НАНО ИЛИ МИКРОСТРУКТУРНЫХ ЭМИТТЕРАХ

Изобретение используется для определения усиления локального электростатического поля и работы выхода в нано- или микроструктурных эмиттерах. Сущность изобретения заключается в том, что измеряют темновую зависимость туннельного эмиссионного тока при увеличении напряжения на аноде и определяют значение напряжения V , облучают измеряемую поверхность эмиттера лазерным пучком ультрафиолетового или видимого диапазона с фиксированным значением оптической мощности и длины волны 1, измеряют значение туннельного фотоэмиссионного тока при увеличении напряжения на аноде и фиксируют значение напряжения V 1, определяют значение работы выхода А и значение усиления локального электростатического поля в пространственной области облучения эмиттера из данного соотношения или дополнительно облучают измеряемую поверхность эмиттера лазерным пучком на другой длине волны 2 ультрафиолетового или видимого диапазона с максимальной разницей относительно первой длины волны, определяют значение напряжения V 2 и определяют значение усиления локального электростатического поля в пространственной области облучения эмиттера и значение работы выхода А из данного соотношения. Технический результат: обеспечение возможности определения локального электростатического поля с одновременным определением работы вывода электронов из эмиттера. 4 ил.

2529452
выдан:
опубликован: 27.09.2014
СПОСОБ ИЗГОТОВЛЕНИЯ СТЕКЛОВИДНОЙ КОМПОЗИЦИИ

Изобретение относится к светотехнике, а именно изготовлению светоизлучающих полупроводниковых приборов на подложке из аморфного минерального стекла. Стекловидная композиция на основе минерального стекла, содержащего окислы элементов II, и/или III, и/или IV группы периодической системы, отличается тем, что поверхность стекла покрыта выращенным слоем электропроводящего и светоизлучающего полупроводникового соединения типа A2B5 , и/или A2B6, и/или А3В 5, и/или А4В6. Также предложен способ изготовления стекловидной композиции на основе минерального стекла, содержащего окислы элементов I,I и/или III, и/или IV группы периодической системы, в котором для образования на стеклянной поверхности слоя электропроводящего и светоизлучающего соединения типа А 2В5, и/или А2В6, и/или А3В5, и/или А4В6 стекло подвергают термообработке путем нагрева в инертном газе при температуре 500-5000°С, легируют стекло до или в процессе термообработки элементами V и/или VI группы, удаляют кислород из зоны термообработки. Изобретение обеспечивает возможность формирования прогнозируемых полупроводниковых соединений различного состава. 2 н. и 4 з.п. ф-лы.

2529443
выдан:
опубликован: 27.09.2014
КОМБИНИРОВАННЫЙ РЕГЕНЕРАТИВНЫЙ ТЕПЛООБМЕННИК

Изобретение относится к газовым микрокриогенным машинам, а именно к регенеративным теплообменникам. В комбинированном регенеративном теплообменнике, включающем теплоизоляционный корпус, насадку, находящуюся внутри корпуса, насадка состоит из двух частей: со стороны "теплого" конца регенеративного теплообменника насадка выполнена из плетеной металлической сетки, со стороны "холодного" конца регенеративного теплообменника заполнена свинцовыми наношариками, между частями насадки установлена защитная сетка, предотвращающая проникновение свинцовых наношариков в область плетеной металлической сетки. Технический результат - повышение эффективности газовой микрокриогенной машины в целом. 1 ил.

2529285
выдан:
опубликован: 27.09.2014
СПОСОБ ФУНКЦИОНАЛИЗАЦИИ УГЛЕРОДНЫХ НАНОМАТЕРИАЛОВ

Изобретение направлено на получение функционализированных углеродных нанотрубок, обладающих хорошей совместимостью с полимерными матрицами. Углеродные нанотрубки подвергают обработке в парах перекиси водорода при температуре от 80°С до 160°С в течение 1-100 ч. Обработку можно проводить в аппарате с псевдоожиженным слоем углеродного наноматериала. Способ характеризуется высокой эффективностью, отсутствием токсичных продуктов окисления, малым расходом реагентов, легко масштабируется. 1 з.п. ф-лы, 2 ил., 4 табл., 4 пр.

2529217
выдан:
опубликован: 27.09.2014
СПОСОБ ИЗГОТОВЛЕНИЯ ТОНКОПЛЕНОЧНОГО ОРГАНИЧЕСКОГО ПОКРЫТИЯ

Изобретение относится к технологии наноматериалов и наноструктур и может применяться для получения тонкопленочных полимерных материалов и покрытий, используемых как в сенсорных, аналитических, диагностических и других устройствах, так и при создании защитных диэлектрических покрытий. Cпособ изготовления тонкопленочного органического покрытия из катионного полиэлектролита включает модификацию подложки, приготовление водного раствора катионного полиэлектролита с адсорбцией полиэлектролита на подложку, промывку, сушку подложку с осажденным слоем. В качестве подложки используют монокристаллический кремний с шероховатостью, меньшей или сравнимой с толщиной получаемого покрытия. Для создания отрицательного электростатического заряда модифицируют подложку в растворе щелочи, перекиси водорода и воды при 75°С в течение 15 мин. Во время адсорбции осуществляют освещение подложки со стороны раствора светом с интенсивностью в диапазоне 2-8 мВт/см2 ис длинами волн из области собственного поглощения кремния. Изобретение позволяет уменьшить шероховатость и толщину органического покрытия. 2 з.п. ф-лы, 3 ил.,5 табл., 6 пр.

2529216
выдан:
опубликован: 27.09.2014
НАНОКОМПОНЕНТНАЯ ЭНЕРГЕТИЧЕСКАЯ ДОБАВКА И ЖИДКОЕ УГЛЕВОДОРОДНОЕ ТОПЛИВО

Изобретение относится к нанокомпонентной энергетической добавке в жидкое углеводородное топливо в виде наночастиц металла, при этом в качестве наночастиц металла используются неоксидированные наночастицы алюминия размером не более 25 нм, покрытые антиоксидантным протектором. Также описывается жидкое углеводородное топливо, содержащее указанные неоксидированные наночастицы алюминия размером не более 25 нм, покрытые антиоксидантным протектором, и стабилизатор. Техническим результатом является повышение эффективности горения топлива при использовании неоксидированных наночастиц алюминия в качестве энергетической добавки в жидкое углеводородное топливо. 2 н. и 2 з.п. ф-лы, 1 ил., 1 пр.

2529035
выдан:
опубликован: 27.09.2014
СПОСОБ ПОЛУЧЕНИЯ НАСЫЩЕННЫХ КАРБОНОВЫХ КИСЛОТ

Изобретение относится к способу получения насыщенных карбоновых кислот, в частности к новому способу гидрирования непредельных карбоновых кислот, и позволяет получать насыщенные карбоновые кислоты, которые находят применение в качестве полупродуктов в органическом синтезе. Способ получения насыщенных карбоновых кислот общей формулы

2529026
выдан:
опубликован: 27.09.2014
СПОСОБ ПОЛУЧЕНИЯ КАТАЛИЗАТОРА ДЛЯ ПРОЦЕССА МЕТАНИРОВАНИЯ

Изобретение может быть использовано в химической промышленности для тонкой очистки водородсодержащих газовых смесей от оксидов углерода путем их гидрирования до метана. Изобретение относится к способу получения катализатора для процесса метанирования, включающему пропитку носителя на основе активной окиси алюминия в виде гранул в растворе, содержащем нитрат никеля, с последующей сушкой при температуре 100°C - 120°C и прокаливанием при температуре 450°C-500°C пропитанного носителя, при этом в раствор нитрата никеля вводят модифицирующую добавку - органическую кислоту с концентрацией 0,5-20,0 мас.%, а готовый катализатор содержит монокристаллиты NiO со средневыборочным размером, лежащим в диапазоне 2-3 нанометра, с концентрацией NiO 12,0-25,0 мас.% и -Аl2О3 - остальное. Технический результат заключается в создании способа получения катализатора метанирования, обладающего повышенной надежностью и активностью, позволяющего снизить себестоимость и сократить период времени осуществления способа. 2 з.п. ф-лы, 1 табл., 13 пр.

2528988
выдан:
опубликован: 20.09.2014
СПОСОБ МОДИФИЦИРОВАНИЯ УГЛЕРОДНЫХ НАНОТРУБОК

Изобретение может быть использовано для получения модифицированных углеродных нанотрубок. Способ модифицирования углеродных нанотрубок включает обработку углеродных нанотрубок водным раствором окислителя, в качестве которого применяют раствор персульфата или гипохлорита при рН более 10, проводимую одновременно с механической обработкой. Изобретение позволяет получить модифицированные углеродные нанотрубки, обладающие хорошей диспергируемостью в воде и в полярных органических растворителях при малом расходе реагентов по сравнению с известными способами. 2 з.п. ф-лы, 2 пр.

2528985
выдан:
опубликован: 20.09.2014
ПОЛИМЕРНЫЙ МЕДЬСОДЕРЖАЩИЙ КОМПОЗИТ И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к нанотехнологии, а именно к материалу и способу получения сферических конгломератов, содержащих наноразмерные частицы (НРЧ) металла, в частности меди, в оболочке из другого вещества или органического полимера. При этом НРЧ получают как в индивидуальном состоянии, так и в виде составных частей нанокомпозитов, в том числе и полимерсодержащих. Изобретение касается способа получения полимерного медьсодержащего композита, состоящего из однородных сферических диаметром 50-200 нм конгломератов полимера с внедренными в них сферическими наночастицами меди диаметром 5-10 нм. Изобретение также касается способа получения полимерного медьсодержащего композита, заключающегося в термическом разложении предшественника композита при 450°С в инертной атмосфере. Технический результат - получение композита из однородных сферических конгломератов, содержащих множество внедренных в полимерную матрицу наночастиц меди с узкой областью распределения по размерам. 2 н. и 2 з.п. ф-лы, 7 ил.

2528981
выдан:
опубликован: 20.09.2014
СПОСОБ ИДЕНТИФИКАЦИИ НАНОДИСПЕРСНЫХ ЧАСТИЦ ДИОКСИДА КРЕМНИЯ В ЦЕЛЬНОЙ КРОВИ

Изобретение относится к области гигиены, санитарии и медицины, в частности, к способам лабораторной диагностики содержания нанодисперсных частиц диоксида кремния в организме работающих, к факторам риска в воздухе рабочей зоны которых относится диоксид кремния, и может быть использован для обоснования санитарно-гигиенических мероприятий по предупреждению и устранению воздействия нанодисперсных соединений. У работника, к факторам риска в воздухе рабочей зоны которого относится диоксид кремния, отбирают венозную цельную кровь и делят ее на две исследуемые пробы. Первую пробу подвергают исследованию рентгеновским энергодисперсионным микроанализом, устанавливая при этом наличие в пробе кремния на уровне порога обнаружения. Вторую пробу крови, смешанную в объемном соотношении 1:1 с раствором гепарина в концентрации 5000 МЕ/мл, подвергают исследованию методом динамического светорассеяния с фотонной корреляционной спектроскопией, определяя при этом размер выявленных частиц диоксида кремния и выполняя графическое построение первой гистограммы распределения их размеров. Затем также методом динамического светорассеяния с фотонной корреляционной спектроскопией исследуют первый контрольный образец, представляющий собой водную суспензию нанодисперсного диоксида кремния, с построением второй гистограммы распределения размеров частиц и второй контрольный образец, представляющий собой смешанную в объемном соотношении 1:1 с раствором гепарина в концентрации 5000 МЕ/мл венозную цельную кровь индивида, не подвергавшегося воздействию диоксида кремния, с построением третьей гистограммы распределения размеров частиц. Производят графическое наложение первой, второй и третьей гистограмм и при совпадении хотя бы части пиков по показателю распределения частиц первой гистограммы с пиками на второй и третьей указанных гистограммах при одновременном установлении наличия в пробе крови кремния на уровне порога обнаружения рентгеновским энергодисперсионным микроанализом считают наличие нанодисперсных частиц диоксида кремния в цельной крови доказанным. Способ обеспечивает возможность определения пространственного распределения наночастиц в объеме, а также динамики поведения наночастиц при исследовании процессов диффузии или агрегации и оседания. 1 з.п. ф-лы, 1 табл., 5 ил.

2528902
выдан:
опубликован: 20.09.2014
КОМПОЗИЦИИ МАТРИКСНЫХ НОСИТЕЛЕЙ, СПОСОБЫ И ПРИМЕНЕНИЯ

Изобретение относится к композиции матриксного носителя для применения в фармацевтической системе доставки для перорального введения, которая является суспензией состоящего из частиц материала в непрерывной масляной фазе. Состоящий из частиц материал содержит первую твердую фазу, содержащую наночастицы диоксида кремния, имеющие гидрофобную поверхность, с размером частиц 5-1000 нм, и вторую твердую фазу, содержащую биополимер, имеющий гидрофильные и гидрофобные части, где указанный биополимер содержит полисахарид. Указанная непрерывная масляная фаза ассоциирована с первой и второй твердыми фазами, и масса биополимера в два раза больше, чем масса наночастиц диоксида кремния. Изобретение также относится к способу получения композиции матриксного носителя, который включает смешивание первой твердой фазы, содержащей наночастицы диоксида кремния, с маслом, активирование второй твердой фазы, содержащей полисахарид, причем активирование предусматривает размалывание, вакуумную обработку, химическую обработку или ультразвуковую обработку, добавление этой активированной второй твердой фазы в масло и смешивание масла, содержащего первую твердую фазу, и масла, содержащего активированную вторую твердую фазу. Изобретение обеспечивает улучшение эффективности и биодоступности лекарственного средства, заключенного в матриксный носитель. 2 н. и 11 з.п. ф-лы, 3 ил., 1 табл., 8 пр.

2528895
выдан:
опубликован: 20.09.2014
ПОЛИМЕРНОЕ ЭЛЕКТРОХРОМНОЕ УСТРОЙСТВО

Изобретение относится к полимерному электрохромному устройству, способному контролируемо изменять величину светопоглощения при приложении электрического напряжения. Полимерное электрохромное устройство включает, по крайней мере, два электрода и электрохромный состав. Электрохромный состав содержит катодный компонент(ы) и анодный компонент(ы), по крайней мере один из которых является электрохромным компонентом, а также электролит. Электрохромный компонент представляет собой дисперсию наночастиц нерастворимого электрохромного полимера в органическом растворителе. Изобретение обеспечивает упрощение изготовления устройства за счет использования более легкодоступного в технологическом отношении нерастворимого электрохромного полимера по сравнению с используемыми по известному уровню растворимыми электрохромными полимерами. 3 з.п. ф-лы, 4 ил., 6 пр.

2528841
выдан:
опубликован: 20.09.2014
СПОСОБ ПОЛУЧЕНИЯ НАНОРАЗМЕРНЫХ ПОРОШКОВ ТИТАНАТА ЛИТИЯ

Изобретение может быть использовано при получении материалов для электронной промышленности, в частности для литий-ионных аккумуляторов. Способ получения титаната лития включает получение смеси, содержащей соединения титана и лития, и термообработку полученной смеси с последующим обжигом продукта термообработки. Перед получением указанной смеси раствор тетрахлорида титана подвергают солевому гидролизу в кипящем растворе хлорида лития при температуре 120÷150°C. Затем фильтруют образующуюся пульпу и промывают полученный осадок раствором щелочного агента, выбранного из группы: карбонат аммония, гидроокись аммония, карбонат лития, гидроокись лития, с последующей промывкой водой и сушкой. В качестве соединений лития для получения смеси, содержащей соединения титана и лития, берут соединение лития, выбранное из группы: карбонат, гидрооксид, оксалат, ацетат лития или их смеси. Далее проводят термообработку при 400-500°C в режиме пиролиза. Обжиг термообработанной смеси проводят при температуре 800÷900°C в течение не менее 5 часов. Изобретение позволяет упростить получение наноразмерных частиц порошка титаната лития Li4Ti 5O12 шпинельной структуры, сократить время получения конечного продукта. 4 з.п. ф-лы, 3 ил., 2 табл., 1 пр.

2528839
выдан:
опубликован: 20.09.2014
НАНОТЕХНОЛОГИЧЕСКИЙ КОМПЛЕКС НА ОСНОВЕ ИОННЫХ И ЗОНДОВЫХ ТЕХНОЛОГИЙ

Использование: для замкнутого цикла производства новых изделий наноэлектроники. Сущность изобретения заключается в том, что в нанотехнологический комплекс на основе ионных и зондовых технологий, включающий распределительную камеру со средствами откачки, в которой расположен центральный робот распределитель с возможностью осевого вращения, содержащий захват носителей подложек, при этом распределительная камера содержит фланцы, которыми она соединена с камерой загрузки и модулем ионной имплантации, захват носителей подложек имеет возможность взаимодействия с камерой загрузки и модулем ионной имплантации, введен измерительный модуль, включающий сканирующий зондовый микроскоп и модуль ионных пучков с системой газовых инжекторов, при этом они соединены с фланцами распределительной камеры и имеют возможность взаимодействия с захватом носителей подложек. Технический результат: обеспечение возможности варьирования технологическими маршрутами и расширение функциональных возможностей. 4 з.п. ф-лы, 1 ил. распределительной камеры и имеют возможность взаимодействия с захватом носителей подложек.

Подобное выполнение расширяет функциональные возможности нанотехнологического комплекса.

2528746
выдан:
опубликован: 20.09.2014
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ДИОКСИДА КРЕМНИЯ

Изобретение относится к химической промышленности и может быть использовано для получения композитов, которые применяются в фотокаталитических процессах, в качестве катализаторов олигомеризации олефинов и полимеризации этилена. Композиционный материал на основе силикагеля получают путем осаждения диоксида кремния из силиката натрия в присутствии диоксида титана или закиси меди барботированием углекислого газа через толщину суспензии при атмосферном давлении с образованием композиционного материала по типу «ядро (диоксид кремния)/оболочка (оксид металла)». Изобретение позволяет упростить процесс получения композита, так как отпадает необходимость сложного аппаратного оформления процесса, связанного с применением высоких давлений диоксида углерода при получении силикагеля, а также экологическая чистота технологии, которая связана с отсутствием выбросов диоксида углерода, достигаемая повторным его использованием. Способ может быть использован как в лабораторных, так и в промышленных условиях. 3 ил., 2 пр.

2528667
выдан:
опубликован: 20.09.2014
СПОСОБ ИЗГОТОВЛЕНИЯ ПЛЕНОЧНОГО ЭЛЕКТРЕТА

Изобретение относится к области технологий изготовления пленочных электретов и может быть использовано, например, при производстве биполярных электретных микрофонов и нового класса пьезодатчиков на основе ламинированных электретных пленок, обладающих гигантским пьезомодулем (до 1000 пКл/Н). Целью изобретения является повышение величины и стабильности поверхностной плотности положительного заряда в пленочных фторполимерах. Это достигается тем, что в способе изготовления пленочного электрета, включающем нанесение на металлический электрод слоя фторполимера, нанесение на поверхность фторполимера дискретного слоя, состоящего из изолированных друг от друга наноразмерных агрегатов титансодержащих наноструктур, и последующее электретирование в положительном коронном разряде, перед нанесением титансодержащих наноструктур поверхность фторполимера обрабатывают плазмой высокочастотного емкостного разряда в атмосфере насыщенного водяного пара. Использование данного технического решения позволяет не менее чем в 1.45 раза увеличить поверхностную плотность положительного заряда во фторполимерах, а также повысить временную и термостабильность заряда. 2 ил., 5 пр.

2528618
выдан:
опубликован: 20.09.2014
СПОСОБ ПОЛУЧЕНИЯ СЛОИСТОГО НАНОМАТЕРИАЛА

Способ получения слоистого наноматериала, включающий формирование слоев различного состава, отличается тем, что, по крайней мере, одну из граничащих друг с другом областей соседних слоев, в пределах ее толщины, по меньшей мере, равной трем монослоям, формируют из неоднородных по структуре элементов, которые хотя бы в одном направлении имеют размеры, кратные периоду решетки соседнего слоя и/или четверти длины волны своих валентных электронов. Использование заявленного изобретения обеспечивает возможность получения композитных слоистых наноматериалов с новыми или улучшенными потребительскими свойствами. 20 ил.

2528581
выдан:
опубликован: 20.09.2014
СПОСОБ ИЗГОТОВЛЕНИЯ ПОГЛОЩАЮЩЕГО ПОКРЫТИЯ ДЛЯ СОЛНЕЧНОГО НАГРЕВА, ПОКРЫТИЕ И ЕГО ПРИМЕНЕНИЕ

Заявлен способ изготовления поглощающего покрытия для солнечного нагрева, наносимого на металлическую подложку, в частности наносимого на тонкий алюминиевый лист, и покрытие, изготовленное таким способом. Покрытие представляет собой покрытие золь-гель типа на основе золя оксида металла, в котором частицы пигмента тщательно перемешивают с золем, с последующим нанесением лака смешанного золя на подложку, затем высушивают при температуре 180-600°С на воздухе при повышенной температуре для получения золь-гель покрытия, в котором покрытие представляет собой покрытие золь-гель типа на основе золя оксида металла с частицами пигмента черного феррита марганца (Mn3Cu2FeO 8), которые тщательно перемешаны с золем до нанесения на подложку. Изобретение предлагает способ и покрытие, в котором требования по поглощению солнечной энергии, термоэмиссионной способности, термостабильности и стойкости реализованы в приемлемой степени. 2 н. и 12 з.п. ф-лы, 3 ил., 2 табл.

2528486
выдан:
опубликован: 20.09.2014
ОРГАНИЧЕСКОЕ ФОТОВОЛЬТАИЧЕСКОЕ УСТРОЙСТВО, СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ И ПРИМЕНЕНИЕ ФТОРСОДЕРЖАЩИХ МОДИФИКАТОРОВ ДЛЯ УЛУЧШЕНИЯ ХАРАКТЕРИСТИК ОРГАНИЧЕСКИХ СОЛНЕЧНЫХ БАТАРЕЙ

Изобретение относится к области органической электроники, а именно к органическим фотовольтаическим устройствам (солнечным батареям и фотодетекторам), изготовленным с использованием органических фторсодержащих соединений в качестве модифицирующих добавок. Изобретение относится к органическому фотовольтаическому устройству с объемным гетеропереходом, содержащему последовательно расположенные подложку, дырочно-собирающий электрод, дырочно-транспортный слой, фотоактивный слой, состоящий из смеси полупроводникового материала n-типа, полупроводникового материала p-типа и органического фторсодержащего соединения, электрон-транспортный слой, электрон-собирающий электрод, подложку. При этом фотоактивный слой дополнительно содержит фторсодержащий модификатор F1-F8 в концентрации от 0.000000001% до 40% по весу. Также изобретение относится к способу изготовления фотовольтаического устройства, который заключается в том, что фторсодержащий модификатор вводят в раствор полупроводниковых компонентов, из которого отливают затем фотоактивные пленки. Также изобретение относится к применению фторсодержащих модификаторов F1-F8 для улучшения характеристик органических солнечных батарей с объемным гетеропереходом. Технический результат заключается в разработке новых добавок-модификаторов наноструктуры полимер-фуллереновых систем, способных улучшать характеристики фотовольтаических устройств. 3 н.п. ф-лы, 14 ил., 8 табл., 8 пр.

2528416
выдан:
опубликован: 20.09.2014
НАНОСТРУКТУРНЫЙ ТЕРМОЭЛЕКТРИЧЕСКИЙ МАТЕРИАЛ

Изобретение относится к наноструктурному термоэлектрическому материалу. Материал содержит теллурид сурьмы в виде тройного твердого раствора состава ВixSb2-xТе 3, где х имеет значения от 0,4 до 0,5, и дисперсный наполнитель, выполненый из ультрадисперсного алмаза со средним размером частиц от 3 до 5 нм. Концентрация частиц ультрадисперсного алмаза составляет от 0,2 до 15% от объема тройного твердого раствора. Изобретение позволяет повысить термоэлектрическую добротность выше 1,0 и механическую прочность более 100 МПа наноструктурного термоэлектрического материала. 1 з.п. ф-лы, 4 пр.

2528338
выдан:
опубликован: 10.09.2014
УЛЬТРАФИОЛЕТОВЫЙ СВЕТОДИОД НА НИТРИДНЫХ ГЕТЕРОСТРУКТУРАХ

Изобретение относится к полупроводниковым нитридным наногетероструктурам и может быть использовано для изготовления светодиодов ультрафиолетового диапазона с длинами волн в диапазоне 260-380 нм. Ультрафиолетовый светодиод на нитридных гетероструктурах включает металлические электроды p-типа, нитридный слой p-типа, III-нитридную активную область, III-нитридный слой n-типа, сапфировую подложку с текстурированной полуполярной или неполярной поверхностью III-нитридного слоя. При этом текстурированная поверхность полуполярной или неполярной плоскости III-нитридного слоя выполнена в виде щетки нанотрубок, размеры которых и расстояние между которыми сравнимы с длиной волны излучения. Изобретение позволяет увеличить внешний квантовый выход устройства за счет создания текстурированной поверхности с увеличенным выводом излучения такого типа, чтобы она позволяла выводить большой световой поток, не внося при этом нежелательную поляризацию, значительно уменьшить внутреннее отражение, улучшить эффективность рекомбинации носителей. 3 з.п. ф-лы, 1 ил.

2528112
выдан:
опубликован: 10.09.2014
Наверх