сырьевая смесь для получения гранулированного теплоизоляционного материала

Классы МПК:C04B20/06 вспучивание глины, перлита, вермикулита или аналогичных гранулированных материалов
C04B28/26 силикаты щелочных металлов
C04B38/02 полученные добавлением химических газообразующих средств
C04B111/40 пористые или легковесные материалы
Автор(ы):,
Патентообладатель(и):Федеральное государственное бюджетное учреждение науки Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева Кольского научного центра РАН (ИХТРЭМС КНЦ РАН) (RU)
Приоритеты:
подача заявки:
2013-07-30
публикация патента:

Изобретение относится к составу сырьевой смеси для производства строительных материалов, в частности пористых искусственных изделий, и может быть использовано при изготовлении гранулированного теплоизоляционного материала и особо легкого заполнителя для бетонов. Сырьевая смесь для получения гранулированного теплоизоляционного материала содержит, мас.%: микрокремнезем 33,5-45, золошлаковую смесь 3,0-14,5, отход обогащения апатито-нефелиновой руды 25-30, гидроксид натрия (в пересчете на Na2O) 22-27, двууглекислый аммоний 0,5-1,5. Изобретение развито в зависимых пунктах. Технический результат - повышение прочности гранулированного теплоизоляционного материала при снижении его водопоглощения, утилизация техногенных отходов. 3 з.п. ф-лы, 1 табл.

Формула изобретения

1. Сырьевая смесь для получения гранулированного теплоизоляционного материала, включающая кремнеземсодержащий компонент, отход обогащения апатито-нефелиновой руды и гидроксид натрия, отличающаяся тем, что она дополнительно содержит золошлаковую смесь и двууглекислый аммоний, а в качестве кремнеземсодержащего компонента - микрокремнезем, при следующем соотношении компонентов, мас.%:

микрокремнезем33,5-45
золошлаковая смесь 3,0-14,5
отход обогащения апатито-нефелиновой руды25-30
гидроксид натрия (в пересчете на Na2O) 22-27
двууглекислый аммоний 0,5-1,5

2. Сырьевая смесь по п.1, отличающаяся тем, что микрокремнезем имеет состав, мас.%: SiO2 92,84-93,04, TiO2 0,47-0,98, Fe2O3 0,76-1,93, Al2O3 0,25-0,74, СаО 0,59-0,88, K2O 0,23-1,2, MnO 0,04-0,30, CuO 0,13-0,26, потери при прокаливании - остальное.

3. Сырьевая смесь по п.1, отличающаяся тем, что золошлаковая смесь имеет состав, мас.%: SiO2 52,48-53,44, TiO2 1,08-1,23, Fe2O3 13,44-13,74, FeO 1,03-1,93, Al2O3 17,57-18,45, СаО 2,43-2,47, K 2O 1,30-1,55, потери при прокаливании - остальное.

4. Сырьевая смесь по п.1, отличающаяся тем, что отход обогащения апатито-нефелиновой руды имеет состав, мас.%: SiO2 35,10-35,98, TiO2 4,43-4,98, (Fe2O 3+FeO) 7,00-12,22, Al2O3 16,45-16,61, СаО 8,92-9,13, MgO 1,07-1,25, P2O5 4,05-4,11, Na2O 9,13-10,77, K2O 4,59-5,05.

Описание изобретения к патенту

Изобретение относится к составу сырьевой смеси для производства строительных материалов, в частности пористых искусственных изделий, и может быть использовано при изготовлении гранулированного теплоизоляционного материала и особо легкого заполнителя для бетонов в промышленном и гражданском строительстве.

При изготовлении строительных изделий все более широкое распространение получает техногенное сырье в виде кремнеземсодержащих промышленных отходов горнорудных и металлургических предприятий. Одним из перспективных направлений применения микрокремнезема является получение теплоизоляционных материалов с использованием жидкостекольных композиций. Конструкционно-теплоизоляционные материалы на основе жидкого стекла представляют значительный интерес в условиях сложившегося дефицита цементного вяжущего, причем технологии их получения просты и не предполагают больших материальных вложений. Однако использование техногенного сырья не позволяет получать достаточно высокие технические характеристики теплоизоляционных материалов.

Известна сырьевая смесь для получения гранулированного теплоизоляционного материала (см. Горлов Ю.П. Технология теплоизоляционных и акустических материалов и изделий. - М.: Высшая школа, 1989. - С.179-180), содержащая следующие компоненты, мас.%: жидкое стекло плотностью 1,4-1,45 г/см3 - 93-95%, тонкодисперсный наполнитель с удельной поверхностью 0,2-0,3 м2/г (зола ТЭС) - 7-5% и гидрофобизирующую добавку - кремнийорганическую жидкость (ГКЖ-94, ГКЖ-10, ГКЖ-11) 0,5-1%). При приготовлении материала сырьевую смесь, перемешанную до однородного состояния, подают в капельном виде в раствор хлористого кальция с температурой 22-30°C и выдерживают в течение 40 минут для формирования гранул. Полученные сырцовые гранулы подсушивают при 85-90°C в течение 10-20 минут и затем вспучивают при 300-450°C в течение 1-3 минут. Полученный гранулированный материал - стеклопор имеет прочность 1-7 кгс/см2 и высокое водопоглощение.

Недостатками данной сырьевой смеси являются низкие прочность и водостойкость полученного гранулированного теплоизоляционного материала. Применение раствора хлористого кальция при формировании гранул из сырьевой смеси вызывает коррозию используемого оборудования.

Известна также сырьевая смесь для получения гранулированного теплоизоляционного материала (см. пат. 2452704 РФ, МПК C04B 12/04 (2006.01), 2012), включающая, мас.%: гидроксид натрия - 2-40, отход обогащения апатито-нефелиновой руды 0,9-10, барханный песок - 49-96, кремнеземсодержащий компонент - остальное. Отход обогащения апатито-нефелиновой руды содержит, мас.%: нефелин - до 84, полевой шпат - до 12, эгирин - до 4, гидрослюду - до 3, а также другие примеси. В качестве кремнеземсодержащего компонента используют кремнистую породу - трепел. При приготовлении материала сырьевую смесь перемешивают, подвергают распылительной сушке в противоточном потоке входящего и исходящего воздуха с температурой 380 и 115°C соответственно с получением сырцового гранулята. Последний выдерживают в течение 15 часов и вспучивают при температуре 630-650°C. Полученный гранулированный материал имел насыпную плотность 95-130 кг/м3, прочность 9-10 кгс/см2 и водопоглощение сырьевая смесь для получения гранулированного теплоизоляционного   материала, патент № 2532112 5%.

Недостатками известной сырьевой смеси являются низкая прочность теплоизоляционного материала, а также ограниченное число используемых техногенных отходов.

Настоящее изобретение направлено на достижение технического результата, заключающегося в повышении прочности гранулированного теплоизоляционного материала при обеспечении его пониженного водопоглощения. Кроме того, технический результат заключается в расширении сырьевой базы и улучшении экологии за счет использования большего числа техногенных компонентов.

Технический результат достигается тем, что сырьевая смесь для получения гранулированного теплоизоляционного материала, включающая кремнеземсодержащий компонент, отход обогащения апатито-нефелиновой руды и гидроксид натрия, согласно изобретению, дополнительно содержит золошлаковую смесь и двууглекислый аммоний, а в качестве кремнеземсодержащего компонента - микрокремнезем, при следующем соотношении компонентов, мас.%:

микрокремнезем33,5-45
золошлаковая смесь 3,0-14,5
отход обогащения апатито-нефелиновой руды25-30
гидроксид натрия (в пересчете на Na2O) 22-27
двууглекислый аммоний 0,5-1,5

На достижение технического результата направлено то, что микрокремнезем имеет состав, мас.%: SiO2 92,84-93,04, TiO2 0,47-0,98, Fe2O3 0,76-1,93, Al2 O3 0,25-0,74, СаО 0,59-0,88, K2O 0,23-1,2, MnO 0,04-0,30, CuO 0,13-0,26, потери при прокаливании - остальное.

На достижение технического результата направлено также то, что золошлаковая смесь имеет состав, мас.%: SiO 2 52,48-53,44, TiO2 1,08-1,23, Fe2 O3 13,44-13,74, FeO 1,03-1,93, Al2O 3 17,57-18,45, СаО 2,43-2,47, K2O 1,30-1,55, потери при прокаливании - остальное.

На достижение технического результата направлено также и то, что отход обогащения апатито-нефелиновой руды имеет состав, мас.%: SiO2 35,10-35,98, TiO2 4,43-4,98, (Fe2O 3+FeO) 7,00-12,22, Al2O3 16,45-16,61, СаО 8,92-9,13, MgO 1,07-1,25, P2O5 4,05-4,11, Na2O 9,13-10,77, K2O 4,59-5,05.

Существенные признаки заявленного изобретения, определяющие объем правовой охраны и достаточные для получения вышеуказанного технического результата, выполняют функции и соотносятся с результатом следующим образом.

Введение модифицирующей добавки в виде золошлаковой смеси в состав шихты для получения гранулированного теплоизоляционного материала в количестве 3-14,5 мас.% обусловлено тем, что наличие такой добавки приводит к образованию большего числа замкнутых пор с более прочными межпоровыми перегородками. Это способствует снижению водопоглощения и повышению прочности при сжатии. Содержание золошлаковой смеси менее 3 мас.% не позволяет достичь требуемой прочности материала. При содержании добавки более 14,5 мас.% увеличивается вязкость и снижается пластичность жидкостекольной композиции, что ведет к увеличению плотности и ухудшению теплопроводности гранулированного материала.

Введение в состав шихты двууглекислого аммония в количестве 0,5-1,5 мас.% обусловлено тем, что он выполняет функцию разрыхлителя и позволяет увеличить вспучиваемость гранул. Предпочтительно использовать двууглекислый аммоний марки «химически чистый». При содержании двууглекислого аммония менее 0,5 мас.% материал недостаточно вспучивается, что ведет к ухудшению теплопроводности. Содержание добавки аммония более 1,5 мас.% приводит к потере прочности гранулированного материала.

Использование в составе шихты микрокремнезема обусловлено тем, что на его основе готовят жидкостекольную композицию для получения гранулированного материала. При содержании микрокремнезема менее 33,5 мас.% получается материал с пониженной прочностью и водостойкостью. Содержание микрокремнезема более 45 мас.% ведет к избыточному увеличению плотности жидкостекольной композиции и затрудняет гранулирование материала.

Использование в составе шихты отхода обогащения апатито-нефелиновой руды обусловлено тем, что нефелинсодержащие отходы являются эффективной модифицирующей добавкой, улучшающей прочностные характеристики теплоизолирующего материала. Использование отхода обогащения апатито-нефелиновой руды в количестве менее 25 мас.% приводит к снижению прочности гранулированного теплоизоляционного материала, а использование нефелиновых отходов в количестве больше 30 мас.% ведет к уменьшению пластичности жидкостекольной композиции и вследствие этого к ухудшению вспучиваемости гранул, увеличению средней и насыпной плотности и снижению теплопроводности гранулированного материала.

Гидроксид натрия является щелочным компонентом и используется в составе шихты совместно с микрокремнеземом для приготовления жидкостекольной композиции. Он соответствует требованиям ГОСТ 2263-79 и может быть использован в виде водного раствора различной концентрации, предпочтительно 45% водного раствора. В составе шихты гидроксид натрия NaOH содержится в количестве 22-27 мас.% в пересчете на Na2O. Содержание гидроксида натрия менее 22 мас.% ведет к снижению вязкости жидко-стекольной композиции, а содержание более 27 мас.% ведет к ее излишней плотности, что негативно сказывается на формировании гранул.

Совокупность вышеуказанных признаков необходима и достаточна для достижения технического результата изобретения, заключающегося в повышение прочности гранулированного теплоизоляционного материала при обеспечении его пониженного водопоглощения, а также в расширении сырьевой базы и улучшении экологии.

В частных случаях осуществления изобретения предпочтительны техногенные компоненты сырьевой смеси следующего состава.

Микрокремнезем является отходом кислотной переработки нефелина на ОАО «Апатит» и имеет следующий химический состав, мас.%: SiO2 92,84-93,04, TiO2 0,47-0,98, Fe2O3 0,76-1,93, Al2O3 0,25-0,74, СаО 0,59-0,88, K2O 0,23-1,2, MnO 0,04-0,30, CuO 0,13-0,26, потери при прокаливании - остальное. Микрокремнезем представляет собой тонкодисперсный порошок светлосерого цвета с удельной поверхностью 1,72-2,37 м2/г, насыпной плотностью 256-287 кг/м3 и истинной плотностью 2,0-2,17 г/см 3.

Золошлаковая смесь представляет собой отход Апатитской ТЭЦ. Смесь имеет химический состав, мас.%: SiO 2 52,48-53,44, TiO2 1,08-1,23, Fe2 O3 13,44-13,74, FeO 1,03-1,93, Al2O 3 17,57-18,45, СаО 2,43-2,47, K2O 1,30-1,55, потери при прокаливании - остальное. Средняя удельная поверхность этой смеси составляет 0,4 м2/г. Введение золошлаковой смеси в состав шихты для получения теплоизоляционного материала приводит к увеличению интенсивности рефлексов кварца и соединений типа алюмосиликатов. Это можно интерпретировать как увеличение содержания SiO2 в системе силиката натрия Na2 O·nSiO2 и формирование нерастворимых алюмосиликатных новообразований. Введение указанной добавки способствует увеличению количества связей Si-O-Al-O в структуре высокомодульного жидкого стекла из микрокремнезема, а также появлению аналогичных связей вследствие замещения иона кремния ионом алюминия. Кристаллические фазы представлены в основном кристобалитом и кварцем.

Отход флотационного обогащения апатито-нефелиновых руд ОАО «Апатит» имеет следующий химический состав, мас.%: SiO2 35,10-35,98, TiO2 4,43-4,98, (Fe2O3+FeO) 7,00-12,22, Al2O3 16,45-16,61, СаО 8,92-9,13, MgO 1,07-1,25, P2O5 4,05-4,11, Na2 O 9,13-10,77, K2O 4,59-5,05.

Средняя удельная поверхность отхода обогащения равна 0,19 м2 /г. Отход обогащения апатито-нефелиновых руд содержит до 61,1 мас.% нефелина и по своим функциональным свойствам не уступает нефелиновому концентрату. Кроме нефелина основными компонентами отхода являются также эгирин и вторичные минералы по нефелину, содержание которых составляет соответственно, мас.%: 10,2-13,0 и 7,5-10,2. Второстепенные минералы представлены полевым шпатом и апатитом, содержание которых составляет, мас.%: 5,8-7,4 и 3,4-5,4.

Вышеуказанные частные признаки изобретения позволяют получить оптимальный состав сырьевой смеси на базе техногенных отходов при обеспечении повышенной прочности гранулированного теплоизоляционного материала и пониженного водопоглощения.

В общем случае получение сырьевой смеси согласно изобретению заключается в следующем. Сначала готовят шихту путем дозирования в заданных количествах ее компонентов: микрокремнезема, золошлаковой смеси, отхода обогащения апатито-нефелиновой руды, 45% раствора гидроксида натрия и двууглекислого аммония с добавлением воды и перемешиванием в течение 1,5-3 минут до образования однородной суспензии. Далее осуществляют гидротермальную обработку при температуре 90-95°C и атмосферном давлении в течение 20-25 минут. Полученную жидкостекольную композицию подвергают грануляции в тарельчатом грануляторе. Сформированные сырцовые гранулы после сушки при комнатной температуре в течение 6-8 часов опудривают микрокремнеземом и обрабатывают при температуре 300-450°C в течение 20-30 минут с вспучиванием гранул. Затем гранулы подвергают кратковременному обжигу при 800-900°C в течение 1-3 минут. В итоге получают гранулированный теплоизоляционный материал с крупностью гранул 4-16 мм.

Сущность и преимущества заявленной сырьевой смеси для получения гранулированного теплоизоляционного материала могут быть проиллюстрированы Примерами 1-6 конкретного выполнения. Составы сырьевой смеси для получения гранулированного теплоизоляционного материала согласно Примерам 1-6 и основные характеристики полученного теплоизоляционного материала приведены в Таблице.

Из данных Таблицы видно, что предлагаемая сырьевая смесь для получения гранулированного теплоизоляционного материала по сравнению с прототипом позволяет получить материал с более высокой (в 2,2-3,3 раза) прочностью и сопоставимым водопоглощением (сырьевая смесь для получения гранулированного теплоизоляционного   материала, патент № 2532112 5%). Использование в качестве компонентов сырьевой смеси большего числа техногенных отходов позволяет расширить сырьевую базу и улучшить экологию. Гранулированный теплоизоляционный материал из предлагаемой сырьевой смеси может быть получен промышленным способом на базе стандартного строительного оборудования.

Таблица
Пример № Компоненты сырьевой смесиТехнические характеристики материала
микро-кремнезем золошла-ковая смесь отход обогащения апатито-нефелино-вой руды гидроксид натриядвуугле-кислый аммонийнасыпная плотность, кг/м3прочность, кгс/см2водопоглощение, %
фракции гранул, мм
8-16 4-88-164-8 8-164-8
145,0 3,02724 1105112 22245 4,5
2 40,57,527 241 10511326 285 4
336,7 11,327 241106 1172730 43,5
433,514,5 2724 1110123 28304 3,5
5 40,07,525 270,5 10911725 275 5
635,2 11,330 221,5111 12427 284,54

Класс C04B20/06 вспучивание глины, перлита, вермикулита или аналогичных гранулированных материалов

шихта для производства пористого заполнителя -  патент 2528312 (10.09.2014)
шихта для производства пористого заполнителя -  патент 2526064 (20.08.2014)
способ производства вспученных пористых заполнителей -  патент 2526034 (20.08.2014)
шихта для производства пористого заполнителя -  патент 2525411 (10.08.2014)
шихта для производства заполнителя -  патент 2522839 (20.07.2014)
шихта для производства пористого заполнителя -  патент 2522648 (20.07.2014)
сырьевая смесь для изготовления керамзита -  патент 2522113 (10.07.2014)
сырьевая смесь для изготовления керамзита -  патент 2521109 (27.06.2014)
шихта для производства пористого заполнителя -  патент 2521103 (27.06.2014)
сырьевая смесь для изготовления керамзита -  патент 2520613 (27.06.2014)

Класс C04B28/26 силикаты щелочных металлов

способ получения стеклокерамзита и порокерамики из трепелов и опок -  патент 2528814 (20.09.2014)
тепло- шумовлагоизолирующий термостойкий материал и способ его изготовления -  патент 2526449 (20.08.2014)
сырьевая смесь для изготовления оболочки крупного заполнителя, используемого при оформлении цветников и клумб -  патент 2525410 (10.08.2014)
способ изготовления конструкционно-теплоизоляционного материала -  патент 2524364 (27.07.2014)
сырьевая смесь для изготовления материала, имитирующего природный камень -  патент 2508267 (27.02.2014)
огнезащитная композиция для воздуховодов "файрекс-300" -  патент 2506250 (10.02.2014)
способ изготовления теплоизоляционных изделий -  патент 2504526 (20.01.2014)
способ получения теплоизоляционного материала -  патент 2504525 (20.01.2014)
способ изготовления строительных изделий -  патент 2502697 (27.12.2013)
теплоизоляционный материал и способ его изготовления -  патент 2501761 (20.12.2013)

Класс C04B38/02 полученные добавлением химических газообразующих средств

состав керамзитобетонной смеси -  патент 2527974 (10.09.2014)
сырьевая смесь для получения газобетона -  патент 2524361 (27.07.2014)
сырьевая смесь для ячеистых изделий автоклавного твердения -  патент 2509737 (20.03.2014)
состав сырьевой смеси для изготовления неавтоклавного ячеистого бетона естественного твердения и способ получения сырьевой смеси для изготовления неавтоклавного ячеистого бетона естественного твердения -  патент 2500654 (10.12.2013)
сырьевая смесь для получения пористого заполнителя -  патент 2497780 (10.11.2013)
сырьевая смесь для приготовления морозостойких стеновых строительных камней и монолитных стен -  патент 2484067 (10.06.2013)
сырьевая смесь для изготовления керамических теплоизоляционных строительных материалов -  патент 2484063 (10.06.2013)
сырьевая смесь для изготовления газобетона -  патент 2484062 (10.06.2013)
способ получения теплоизоляционного пеностеклокерамического материала -  патент 2483046 (27.05.2013)
способ приготовления газообразователя для поризации гипсовых смесей -  патент 2478595 (10.04.2013)

Класс C04B111/40 пористые или легковесные материалы

состав для теплоизоляции строительных конструкций -  патент 2525536 (20.08.2014)
способ изготовления конструкционно-теплоизоляционного материала -  патент 2524364 (27.07.2014)
сырьевая смесь для изготовления кирпича -  патент 2513463 (20.04.2014)
сырьевая смесь для изготовления пористого теплоизоляционного материала -  патент 2497774 (10.11.2013)
способ приготовления газообразователя для поризации гипсовых смесей -  патент 2478595 (10.04.2013)
легкие цементирующие композиции и строительные изделия и способы их изготовления -  патент 2470884 (27.12.2012)
способ получения ячеистого строительного материала -  патент 2464251 (20.10.2012)
способ получения конструкционно-теплоизоляционного строительного материала на основе алюмосиликатных микросфер -  патент 2455253 (10.07.2012)
способ получения теплоизоляционно-конструкционного строительного материала -  патент 2448071 (20.04.2012)
способ изготовления арболита -  патент 2439036 (10.01.2012)
Наверх