способ определения параметров орбиты космического объекта

Классы МПК:B64G3/00 Средства наблюдения или слежения за полетом космических кораблей
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт машиностроения" (ФГУП ЦНИИмаш) (RU)
Приоритеты:
подача заявки:
2013-07-16
публикация патента:

Изобретение относится к способам определения орбит космических объектов (КО), например космического мусора, бортовыми средствами космического аппарата (КА). Способ заключается в вычислении фокального параметра, истинной аномалии, эксцентриситета и наклонения орбиты интересующего КО по аналитическим формулам, основанным на законах кеплеровского движения. Вычисления ведутся без использования итерационных процедур, на базе определения в последовательные моменты времени расстояний между КО и КА и некоторых углов. Эти исходные данные получают обработкой на борту КА изображений КО, получаемых с помощью бинокулярной системы оптических датчиков и ПЗС-матриц. Техническим результатом изобретения является повышение оперативности определения орбит КО на борту КА и тем самым - безопасности полетов КА. 3 ил.

способ определения параметров орбиты космического объекта, патент № 2531433 способ определения параметров орбиты космического объекта, патент № 2531433 способ определения параметров орбиты космического объекта, патент № 2531433

Формула изобретения

Способ определения параметров орбиты космического объекта, заключающийся в определении на борту космического аппарата в моменты времени ti, где i=1, 2, 3, способ определения параметров орбиты космического объекта, патент № 2531433 , значений радиус-вектора rка(ti), соединяющего центр Земли с местоположением космического аппарата, значений широты способ определения параметров орбиты космического объекта, патент № 2531433 кa(ti) подспутниковых точек космического аппарата, значений расстояния способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) между космическим аппаратом и космическим объектом, значений угла способ определения параметров орбиты космического объекта, патент № 2531433 (ti) между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта, отличающийся тем, что определяют в моменты времени t i бортовыми оптическими датчиками угол способ определения параметров орбиты космического объекта, патент № 2531433 (ti) между направлением от космического аппарата до космического объекта и местным горизонтом, лежащий в плоскости, образованной положениями космического аппарата, космического объекта и центром Земли, вычисляют значения радиус-вектора r ко(ti) космического объекта, соединяющего центр Земли с положением космического объекта в момент времени t i, и угловое расстояние способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) между текущими положениями космического аппарата и космического объекта в момент времени ti в соответствии с математическими зависимостями:

способ определения параметров орбиты космического объекта, патент № 2531433 ,

способ определения параметров орбиты космического объекта, патент № 2531433 ,

где:

rка(ti) - радиус-вектор космического аппарата, соединяющий центр Земли с положением космического аппарата в момент времени ti ;

способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) - расстояние между центрами масс космического аппарата и космического объекта в момент времени ti ;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между направлением от космического аппарата до космического объекта и местным горизонтом, лежащий в плоскости, образованной положениями космического аппарата, космического объекта и центром Земли в момент времени ti ;

способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti,

вычисляют угловое расстояние способ определения параметров орбиты космического объекта, патент № 2531433 v(ti, ti+1) между положениями космического объекта для двух следующих друг за другом моментов времени измерений ti и ti+1 по формуле:

способ определения параметров орбиты космического объекта, патент № 2531433 v(ti, ti+1)=arccos[cosспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)cosспособ определения параметров орбиты космического объекта, патент № 2531433 r(ti+1)-sinспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)sinспособ определения параметров орбиты космического объекта, патент № 2531433 r(ti+1)cosспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)],

где:

способ определения параметров орбиты космического объекта, патент № 2531433 (ti)=arccos[cosспособ определения параметров орбиты космического объекта, патент № 2531433 r(ti)cosспособ определения параметров орбиты космического объекта, патент № 2531433 rка(ti)-sinспособ определения параметров орбиты космического объекта, патент № 2531433 r(ti)sinспособ определения параметров орбиты космического объекта, патент № 2531433 rка(ti)cosспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)];

способ определения параметров орбиты космического объекта, патент № 2531433 (ti)=способ определения параметров орбиты космического объекта, патент № 2531433 -способ определения параметров орбиты космического объекта, патент № 2531433 (ti+1)-способ определения параметров орбиты космического объекта, патент № 2531433 (ti);

способ определения параметров орбиты космического объекта, патент № 2531433 ;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угловое расстояние между положением космического аппарата в момент времени ti+1 и космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 rка(ti) - угловое расстояние между положениями космического аппарата в моменты времени ti и ti+1;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между плоскостью, образованной положениями космического аппарата и космического объекта в момент времени ti+1, и плоскостью, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti+1) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti+1;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между плоскостью движения космического аппарата и плоскостью, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti,

вычисляют параметры орбиты космического объекта: фокальный параметр P(ti), истинную аномалию способ определения параметров орбиты космического объекта, патент № 2531433 (ti), эксцентриситет e(ti) и наклонение орбиты iко в момент времени ti в соответствии с математическими зависимостями:

способ определения параметров орбиты космического объекта, патент № 2531433 ,

способ определения параметров орбиты космического объекта, патент № 2531433 ,

способ определения параметров орбиты космического объекта, патент № 2531433 ,

способ определения параметров орбиты космического объекта, патент № 2531433 ,

где:

способ определения параметров орбиты космического объекта, патент № 2531433 ;

способ определения параметров орбиты космического объекта, патент № 2531433 ко(ti)=arcsin[sinj(ti)sin(способ определения параметров орбиты космического объекта, патент № 2531433 z(ti)+способ определения параметров орбиты космического объекта, патент № 2531433 r(ti))];

способ определения параметров орбиты космического объекта, патент № 2531433 ;

j(ti)=arccos[cosспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)cosспособ определения параметров орбиты космического объекта, патент № 2531433 ка(ti)];

способ определения параметров орбиты космического объекта, патент № 2531433 ;

rко(i+1) - радиус-вектор космического объекта, соединяющий центр Земли с положением космического объекта в момент времени ti+1;

rко (ti) - радиус-вектор космического объекта, соединяющий центр Земли с положением космического объекта в момент времени ti;

µ - произведение гравитационной постоянной на массу Земли;

способ определения параметров орбиты космического объекта, патент № 2531433 t=ti+1-ti;

способ определения параметров орбиты космического объекта, патент № 2531433 v(ti, ti+1) - угловое расстояние между положениями космического объекта для двух следующих друг за другом моментов времени измерений ti и ti+1 ;

s(ti) - дуга, лежащая в плоскости движения космического объекта и соединяющая его положение в момент времени ti и в ближайший момент времени прохождения экватора;

способ определения параметров орбиты космического объекта, патент № 2531433 ко(ti) - широта подспутниковой точки космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 ко(ti+1) - широта подспутниковой точки космического объекта в момент времени ti+1;

j(ti) - наклонение «условной» орбиты, проходящей через широты подспутниковых точек космического аппарата и космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 z(ti) - дуга, лежащая в плоскости «условной» орбиты с наклонением j(ti) и соединяющая подспутниковую точку космического аппарата в момент времени ti и плоскость экватора;

способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 ка(ti) - широта подспутниковой точки космического аппарата в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - курсовой угол для плоскости условной орбиты, проходящей через широты подспутниковых точек космического аппарата, космического объекта и центр Земли в момент времени ti;

iка - наклонение орбиты космического аппарата;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti.

Описание изобретения к патенту

Изобретение относится к области космонавтики, а именно к определению параметров орбиты космического объекта (КО), например, космического мусора, бортовыми средствами космического аппарата (КА).

Изобретение может быть использовано при обеспечении безопасности полетов КА путем обнаружения и точного определения средствами бортового комплекса параметров движения потенциально опасных КО, оценки динамики сближений КА и КО и определения необходимости выработки импульса корректирующего маневра уклонения КА от КО.

Известен «Способ определения параметров орбиты космического аппарата» патент RU № 2150414, опубликовано 10.06.2000 - (Д1), заключающийся в выполнении измерений траекторных параметров, передаче на комплекс управления совокупности измеренных значений траекторных параметров с последующим их накоплением и обработкой по методу наименьших квадратов. Причем после окончания итерационного процесса исключают отдельные аномальные значения, корректируют точность измерений обрабатываемых траекторных параметров, после чего циклически повторяют обработку до ее завершения и получения оптимальной оценки орбитальных параметров движения КА в зоне измерений выполненного сеанса связи. Основным недостатком способа является низкая оперативность траекторных измерений параметров космического объекта и, следовательно, расчета орбитальных данных из-за ограничения зон радиовидимости объекта наземными средствами и циклического повторения обработки вычислений.

Известен «Параллактический способ определения координат объекта» патент RU № 2027144, опубликовано 20.01.1995 - (Д2), основанный на применении бинокулярной системы оптических датчиков, разнесенных на базовое расстояние относительно друг друга и имеющих параллельные оптические оси. Технические средства, реализующие данный способ, описаны в источниках информации: «Распознавание в системах автоконтроля» / Шибанов Г.П., М.: Машиностроение, 1973, с.176-188 - (Д3); «Голографическое опознавание образов» / Василенко Г.И., М.: Советское радио, 1977, рис.4.21, с.282-283 - (Д4). Данный способ позволяет на основе измеренного параллактического смещения треков прохождения космических объектов, зафиксированных в ПЗС-матрицах (ПЗС-приборы с зарядовой связью) осуществлять определение расстояний - способ определения параметров орбиты космического объекта, патент № 2531433 r (фиг.1) между космическим аппаратом и космическим объектом и угла - способ определения параметров орбиты космического объекта, патент № 2531433 (фиг.2, фиг.3) между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта. Основным недостатком способа является сравнительно низкое быстродействие при определении орбитальных параметров в связи с использованием вычислительных алгоритмов, связанных с необходимостью проведения итерационных расчетов при решении краевых задач.

Наиболее близким по совокупности существенных признаков к изобретению является способ, описанный в научном журнале «Американского Института Аэронавтики и Астронавтики» (US) в публикации Mark Psiaki «Autonomous orbit determination for two spacecraft from relative position measurements)) за номером AIAA-98-4560, опубликовано 10.08.1998 - (Д5), его адрес в Интернете http://arc.aiaa.org/doi/abs/10.2514/6.1998-4560. В данном способе используют измерения расстояния и бокового смещения космического аппарата относительно второго космического аппарата, определение расстояний между которыми осуществляют с помощью лазерных дальномеров. По совокупности существенных признаков этот способ выбран в качестве прототипа к изобретению. Основным недостатком, ограничивающим применение данного способа, является обязательное наличие средств лазерной локации на обоих космических объектах.

В изобретении данная проблема решена применением бинокулярной системы оптических датчиков, располагаемых на борту КА.

Сущность изобретения заключается в вычислении параметров орбиты космического объекта: фокального параметра - P(ti), истинной аномалии - способ определения параметров орбиты космического объекта, патент № 2531433 (ti), эксцентриситета - e(ti) и наклонения орбиты - iко космического объекта в момент времени ti в соответствии с полученными аналитическим методом математическими зависимостями. При этом расчеты проводятся по полученным аналитическим формулам без использования итерационных вычислительных процессов. Исходной информацией являются определения абсолютной величины и ориентации вектора, соединяющего центр масс управляемого КА и положение КО.

Также сущность заявленного способа определения параметров орбиты космического объекта заключается в определении на борту космического аппарата в моменты времени ti, где i=1, 2, 3, способ определения параметров орбиты космического объекта, патент № 2531433 , значений радиус-вектора, соединяющего центр Земли с местоположением космического аппарата - rка(ti), значений широты подспутниковых точек космического аппарата - способ определения параметров орбиты космического объекта, патент № 2531433 ка(ti), значений расстояния между космическим аппаратом и космическим объектом - способ определения параметров орбиты космического объекта, патент № 2531433 r(ti), значений угла между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта способ определения параметров орбиты космического объекта, патент № 2531433 (ti), при этом дополнительно определяют в моменты времени ti бортовыми оптическими датчиками угол между направлением от космического аппарата до космического объекта и местным горизонтом, лежащим в плоскости, образованной положениями космического аппарата, космического объекта и центром Земли - способ определения параметров орбиты космического объекта, патент № 2531433 (ti), вычисляют значения радиус-вектора - r ко(ti) космического объекта, соединяющего центр Земли с положением космического объекта в момент времени t i и угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti - способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) в соответствии с математическими зависимостями:

способ определения параметров орбиты космического объекта, патент № 2531433 ,

способ определения параметров орбиты космического объекта, патент № 2531433 ,

где:

rкa(t i) - радиус-вектор космического аппарата, соединяющий центр Земли с положением космического аппарата в момент времени t i;

способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) - расстояние между центрами масс космического аппарата и космического объекта в момент времени ti ;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между направлением от космического аппарата до космического объекта и местным горизонтом, лежащим в плоскости, образованной положениями космического аппарата, космического объекта и центром Земли в момент времени ti ;

способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti,

вычисляют угловое расстояние между положениями космического объекта - способ определения параметров орбиты космического объекта, патент № 2531433 способ определения параметров орбиты космического объекта, патент № 2531433 (ti, ti+1) для двух следующих друг за другом моментов времени измерений ti и ti+1 по формуле:

способ определения параметров орбиты космического объекта, патент № 2531433 способ определения параметров орбиты космического объекта, патент № 2531433 (ti,ti+1)=arccos[cosспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)cosспособ определения параметров орбиты космического объекта, патент № 2531433 r(ti+1)-sinспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)sinспособ определения параметров орбиты космического объекта, патент № 2531433 r(ti+1)cosспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)],

где:

способ определения параметров орбиты космического объекта, патент № 2531433 (ti)=arccos[cosспособ определения параметров орбиты космического объекта, патент № 2531433 r(ti)cosспособ определения параметров орбиты космического объекта, патент № 2531433 rка(ti)-sinспособ определения параметров орбиты космического объекта, патент № 2531433 r(ti)sinспособ определения параметров орбиты космического объекта, патент № 2531433 rка(ti)cosспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)];

способ определения параметров орбиты космического объекта, патент № 2531433 (ti)=способ определения параметров орбиты космического объекта, патент № 2531433 -способ определения параметров орбиты космического объекта, патент № 2531433 (ti+1)-способ определения параметров орбиты космического объекта, патент № 2531433 (ti);

способ определения параметров орбиты космического объекта, патент № 2531433 ;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угловое расстояние между положением космического аппарата в момент времени ti+1 и космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 rкa(ti) - угловое расстояние между положениями космического аппарата в моменты времени ti и ti+1;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между плоскостью, образованной положениями космического аппарата и космического объекта в момент времени ti+1, и плоскостью, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 (ri+1)- угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti+1;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между плоскостью движения космического аппарата и плоскостью, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti,

вычисляют параметры орбиты космического объекта: фокальный параметр - P(ti ), истинную аномалию - способ определения параметров орбиты космического объекта, патент № 2531433 (ti), эксцентриситет - e(ti) и наклонение орбиты - iко в момент времени ti в соответствии с математическими зависимостями:

способ определения параметров орбиты космического объекта, патент № 2531433 ,

способ определения параметров орбиты космического объекта, патент № 2531433 ,

способ определения параметров орбиты космического объекта, патент № 2531433 ,

способ определения параметров орбиты космического объекта, патент № 2531433 ,

где:

способ определения параметров орбиты космического объекта, патент № 2531433 ;

способ определения параметров орбиты космического объекта, патент № 2531433 ко(ti)=arcsin[sinj(ti)sin(способ определения параметров орбиты космического объекта, патент № 2531433 z(ti)+способ определения параметров орбиты космического объекта, патент № 2531433 r(ti))];

способ определения параметров орбиты космического объекта, патент № 2531433 ;

j(ti)=arccos[cosспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)cosспособ определения параметров орбиты космического объекта, патент № 2531433 ка(ti)];

способ определения параметров орбиты космического объекта, патент № 2531433 ;

rко(ti+1) - радиус-вектор космического объекта, соединяющий центр Земли с положением космического объекта в момент времени ti+1;

r ко(ti) - радиус-вектор космического объекта, соединяющий центр Земли с положением космического объекта в момент времени ti;

µ - произведение гравитационной постоянной на массу Земли;

способ определения параметров орбиты космического объекта, патент № 2531433 t=ti+1-ti;

способ определения параметров орбиты космического объекта, патент № 2531433 способ определения параметров орбиты космического объекта, патент № 2531433 (ti, ti+1) - угловое расстояние между положениями космического объекта для двух следующих друг за другом моментов времени измерений ti и ti+1;

s(ti) - дуга, лежащая в плоскости движения космического объекта и соединяющая его положение в момент времени ti и в ближайший момент времени прохождения экватора;

способ определения параметров орбиты космического объекта, патент № 2531433 ко(ti) - широта подспутниковой точки космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 ко(ti+1) - широта подспутниковой точки космического объекта в момент времени ti+1;

j(ti) - наклонение «условной» орбиты, проходящей через широты подспутниковых точек космического аппарата и космического объекта в момент времени ti ;

способ определения параметров орбиты космического объекта, патент № 2531433 z(ti) - дуга, лежащая в плоскости «условной» орбиты с наклонением j(ti) и соединяющая подспутниковую точку космического аппарата в момент времени ti и плоскость экватора;

способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 ка(ti) - широта подспутниковой точки космического аппарата в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - курсовой угол для плоскости условной орбиты, проходящей через широты подспутниковых точек космического аппарата, космического объекта и центр Земли в момент времени ti;

iкa - наклонение орбиты космического аппарата;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti.

Техническим результатом изобретения является повышение оперативности определения орбит движения КО за счет осуществления на борту КА обработки обнаруженных с помощью бинокулярной системы оптических датчиков и экспонированных ПЗС-матрицами в моменты времени ti и ti+1 изображений КО, получения при этом соответствующих моментам времени ti и ti+1 необходимых измеренных углов и осуществления безытерационного вычисления параметров орбиты КО с использованием предложенных математических зависимостей.

Указанный технический результат достигается тем, что в заявленном способе определения параметров орбиты космического объекта, заключающимся в определении на борту космического аппарата в моменты времени ti, где, где i=1, 2, 3, способ определения параметров орбиты космического объекта, патент № 2531433 , значений радиус-вектора, соединяющего центр Земли с местоположением космического аппарата - rка(ti), значений широты подспутниковых точек космического аппарата -способ определения параметров орбиты космического объекта, патент № 2531433 ка(ti), значений расстояния между космическим аппаратом и космическим объектом - способ определения параметров орбиты космического объекта, патент № 2531433 r(ti), значений угла между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта - способ определения параметров орбиты космического объекта, патент № 2531433 (ti), при этом определяют в моменты времени ti бортовыми оптическими датчиками угол между направлением от космического аппарата до космического объекта и местным горизонтом, лежащим в плоскости, образованной положениями космического аппарата, космического объекта и центром Земли - способ определения параметров орбиты космического объекта, патент № 2531433 (ti), вычисляют значения радиус-вектора - r ко(ti) космического объекта, соединяющего центр Земли с положением космического объекта в момент времени t i и угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti - способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) в соответствии с математическими зависимостями:

способ определения параметров орбиты космического объекта, патент № 2531433 ,

способ определения параметров орбиты космического объекта, патент № 2531433 ,

где:

rка(t i) - радиус-вектор космического аппарата, соединяющий центр Земли с положением космического аппарата в момент времени t i;

способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) - расстояние между центрами масс космического аппарата и космического объекта в момент времени ti ;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между направлением от космического аппарата до космического объекта и местным горизонтом, лежащим в плоскости, образованной положениями космического аппарата, космического объекта и центром Земли в момент времени ti ;

способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti,

вычисляют угловое расстояние между положениями космического объекта - способ определения параметров орбиты космического объекта, патент № 2531433 способ определения параметров орбиты космического объекта, патент № 2531433 (ti, ti+1) для двух следующих друг за другом моментов времени измерений ti и ti+1 по формуле:

способ определения параметров орбиты космического объекта, патент № 2531433 способ определения параметров орбиты космического объекта, патент № 2531433 (ti,ti+1)=arccos[cosспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)cosспособ определения параметров орбиты космического объекта, патент № 2531433 r(ti+1)-sinспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)sinспособ определения параметров орбиты космического объекта, патент № 2531433 r(ti+1)cosспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)],

где:

способ определения параметров орбиты космического объекта, патент № 2531433 (ti)=arccos[cosспособ определения параметров орбиты космического объекта, патент № 2531433 r(ti)cosспособ определения параметров орбиты космического объекта, патент № 2531433 rка(ti)-sinспособ определения параметров орбиты космического объекта, патент № 2531433 r(ti)sinспособ определения параметров орбиты космического объекта, патент № 2531433 rка(ti)cosспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)];

способ определения параметров орбиты космического объекта, патент № 2531433 (ti)=способ определения параметров орбиты космического объекта, патент № 2531433 -способ определения параметров орбиты космического объекта, патент № 2531433 (ti+1)-способ определения параметров орбиты космического объекта, патент № 2531433 (ti);

способ определения параметров орбиты космического объекта, патент № 2531433 ;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угловое расстояние между положением космического аппарата в момент времени ti+1 и космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 rкa(ti) - угловое расстояние между положениями космического аппарата в моменты времени ti и ti+1;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между плоскостью, образованной положениями космического аппарата и космического объекта в момент времени ti+1, и плоскостью, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti+1) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti+1;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между плоскостью движения космического аппарата и плоскостью, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti,

вычисляют параметры орбиты космического объекта: фокальный параметр - P(ti ), истинную аномалию - способ определения параметров орбиты космического объекта, патент № 2531433 (ti), эксцентриситет - e(ti) и наклонение орбиты - iко в момент времени ti в соответствии с математическими зависимостями:

способ определения параметров орбиты космического объекта, патент № 2531433 ,

способ определения параметров орбиты космического объекта, патент № 2531433 ,

способ определения параметров орбиты космического объекта, патент № 2531433 ,

способ определения параметров орбиты космического объекта, патент № 2531433 ,

где:

способ определения параметров орбиты космического объекта, патент № 2531433 ;

способ определения параметров орбиты космического объекта, патент № 2531433 ко(ti)=arcsin[sinj(ti)sin(способ определения параметров орбиты космического объекта, патент № 2531433 z(ti)+способ определения параметров орбиты космического объекта, патент № 2531433 r(ti))];

способ определения параметров орбиты космического объекта, патент № 2531433 ;

j(ti)=arccos[cosспособ определения параметров орбиты космического объекта, патент № 2531433 (ti)cosспособ определения параметров орбиты космического объекта, патент № 2531433 ка(ti)];

способ определения параметров орбиты космического объекта, патент № 2531433 ;

rко(ti+1) - радиус-вектор космического объекта, соединяющий центр Земли с положением космического объекта в момент времени ti+1;

r ко(ti) - радиус-вектор космического объекта, соединяющий центр Земли с положением космического объекта в момент времени ti;

µ - произведение гравитационной постоянной на массу Земли;

способ определения параметров орбиты космического объекта, патент № 2531433 t=ti+1-ti;

способ определения параметров орбиты космического объекта, патент № 2531433 способ определения параметров орбиты космического объекта, патент № 2531433 (ti, ti+1) - угловое расстояние между положениями космического объекта для двух следующих друг за другом моментов времени измерений ti и ti+1;

s(ti) - дуга, лежащая в плоскости движения космического объекта и соединяющая его положение в момент времени ti и в ближайший момент времени прохождения экватора;

способ определения параметров орбиты космического объекта, патент № 2531433 ко(ti) - широта подспутниковой точки космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 ко(ti+1) - широта подспутниковой точки космического объекта в момент времени ti+1;

j(ti) - наклонение «условной» орбиты, проходящей через широты подспутниковых точек космического аппарата и космического объекта в момент времени ti ;

способ определения параметров орбиты космического объекта, патент № 2531433 z(ti) - дуга, лежащая в плоскости «условной» орбиты с наклонением j(ti) и соединяющая подспутниковую точку космического аппарата в момент времени ti и плоскость экватора;

способ определения параметров орбиты космического объекта, патент № 2531433 r(ti) - угловое расстояние между текущими положениями космического аппарата и космического объекта в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 ка(ti) - широта подспутниковой точки космического аппарата в момент времени ti;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - курсовой угол для плоскости условной орбиты, проходящей через широты подспутниковых точек космического аппарата, космического объекта и центр Земли в момент времени ti;

iка - наклонение орбиты космического аппарата;

способ определения параметров орбиты космического объекта, патент № 2531433 (ti) - угол между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта в момент времени ti.

Заявленный способ определения параметров орбиты космического объекта поясняется следующими фигурами:

- на фигуре 1 приведено относительное расположение КА и КО,

- на фигуре 2 представлено относительное расположение плоскостей движения КА и КО,

- на фигуре 3 представлены трассы движения КА и КО.

На фиг.1-фиг.3 и в тексте приняты следующие обозначения:

1 - поверхность Земли,

2 - КА,

3 - радиус-вектор космического аппарата, соединяющий начало координат (центр Земли) с положением КА на его траектории - rка,

4 - угловое расстояние между текущими положениями космического аппарата и космического объекта - способ определения параметров орбиты космического объекта, патент № 2531433 r,

5 - радиус Земли - R,

6 - угол между направлением от КА до КО и местным горизонтом, лежащим в плоскости, образованной положениями КА, КО и центром Земли - способ определения параметров орбиты космического объекта, патент № 2531433 ,

7 - расстояние между центрами масс космического аппарата и космического объекта - способ определения параметров орбиты космического объекта, патент № 2531433 r,

8 - радиус - вектор космического объекта, соединяющий начало координат (центр Земли) с положением КО - rко,

9 - местный горизонт,

10 - КО,

11 - момент времени измерений t i, предшествующий моменту времени измерений ti+1 ;

12 - угловое расстояние между положениями космического аппарата в моменты времени ti и ti+1 - способ определения параметров орбиты космического объекта, патент № 2531433 rка,

13 - угол между плоскостью движения КА и направлением от КА до KO - способ определения параметров орбиты космического объекта, патент № 2531433 ,

14 - момент времени измерений ti+1 , следующий за моментом времени измерений ti;

15 - угол между плоскостью движения космического аппарата и плоскостью образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени t i - способ определения параметров орбиты космического объекта, патент № 2531433 ,

16 - угол между плоскостью большого круга, образованной положениями космического аппарата и космического объекта в момент времени ti+1, и плоскостью большого круга, образованной положениями космического аппарата в момент времени ti+1 и космического объекта в момент времени ti - способ определения параметров орбиты космического объекта, патент № 2531433 ,

17 - траектория полета КА,

18 - угловое расстояние между положением космического аппарата и космического объекта - способ определения параметров орбиты космического объекта, патент № 2531433 ,

19 - угловое расстояние между положениями космического объекта в моменты времени ti и t i+1 - способ определения параметров орбиты космического объекта, патент № 2531433 способ определения параметров орбиты космического объекта, патент № 2531433 ,

20 - траектория полета КО,

21 - плоскость экватора, проходящая через центр Земли перпендикулярно оси ее вращения;

22 - угловое расстояние между положением космического аппарата в момент времени ti и плоскостью экватора, лежащее в плоскости условной орбиты образованной положениями КА и КО в момент времени ti и центром Земли - способ определения параметров орбиты космического объекта, патент № 2531433 Z,

23 - наклонение орбиты КА - iка ,

24 - широта подспутниковой точки КА в момент времени ti - способ определения параметров орбиты космического объекта, патент № 2531433 ка,

25 - курсовой угол для плоскости условной орбиты, проходящей через широты подспутниковых точек космического аппарата, космического объекта и центр Земли в момент времени ti - способ определения параметров орбиты космического объекта, патент № 2531433 (ti),

26 - курсовой угол между проекцией вектора скорости КА на местный горизонт и местной параллелью в момент времени ti - способ определения параметров орбиты космического объекта, патент № 2531433 (ti),

27 - наклонение орбиты космического объекта - iко,

28 - широта подспутниковой точки КО в момент времени ti - способ определения параметров орбиты космического объекта, патент № 2531433 ко(ti),

29 - местная параллель на широте подспутниковой точки КА в момент времени ti,

30 - широта подспутниковой точки КО в момент времени ti+1 - способ определения параметров орбиты космического объекта, патент № 2531433 ко(ti+1).

Покажем возможность осуществления изобретения, т.е. возможность его промышленного применения.

При осуществления изобретения с наземных пунктов управления ежесуточно во время сеанса связи на борт космического аппарата производится запись командно-программной информации, содержащей данные о его текущих орбитальных параметрах на момент сеанса связи («Бортовые системы управления космическими аппаратами»: Учебное пособие / Бровкин А.Г., Бурдыгов Б.Г., Гордийко С.В. и др., под редакцией Сырова А.С. М.: Изд-во МАИ-ПРИНТ, 2010, с.45-47, 56-61, 80-98)- (Д6). Далее происходит регистрация космических объектов бортовыми оптическими датчиками, представляющими собой бинокулярную систему разнесенных друг относительно друга оптических датчиков и имеющих параллельные оптические оси (Д3, Д4). На основе измеренного параллактического смещения треков прохождения космических объектов, зафиксированных на ПЗС-матрицах в моменты времени ti и ti+1, производится определение по методике (Д2) расстояния между центрами масс космического аппарата и космического объекта (способ определения параметров орбиты космического объекта, патент № 2531433 r), а также угла способ определения параметров орбиты космического объекта, патент № 2531433 между плоскостью движения космического аппарата и направлением от космического аппарата до космического объекта (Д6). Затем бортовыми оптическими датчиками и исполнительными органами системы стабилизации и ориентации космического аппарата, описанными в (Д6, с.80-98) определяют угол способ определения параметров орбиты космического объекта, патент № 2531433 (фиг.1, позиция 6) между направлением от космического аппарата до космического объекта и местным горизонтом, лежащим в плоскости, образованной положениями КА, КО и центром Земли. Далее по вышеприведенным формулам определяют параметры орбиты космического объекта.

Процедуры и технология ежесуточной записи командно-программной информации, содержащей данные о текущих орбитальных параметрах КА на момент сеанса связи, показаны в (Д6, с.45-47).

Регистрация космических объектов, а также состав и технические возможности бортовых оптических датчиков приведены в (Д6, с.56-61).

Реализация бинокулярной системы разнесенных друг относительно друга оптических датчиков и имеющих параллельные оптические оси, описана в (Д3, Д4).

Способ измерений параллактического смещения треков прохождения космических объектов, зафиксированных на ПЗС-матрицах, а также измерение расстояний между центрами масс космического аппарата и космического объекта способ определения параметров орбиты космического объекта, патент № 2531433 r и углов способ определения параметров орбиты космического объекта, патент № 2531433 между плоскостью движения космического аппарата и направлениями от космического аппарата до космического объекта производится по методикам, приведенных в (Д2 и Д3).

Взаимодействие бортовых оптических датчиков и исполнительных органов системы стабилизации и ориентации космического аппарата описано в (Д6, с.80-98) дает возможность определить угол - способ определения параметров орбиты космического объекта, патент № 2531433 между направлением от космического аппарата до космического объекта и местным горизонтом, лежащим в плоскости, образованной положениями КА, КО и центром Земли.

Возможность осуществления итерационного вычислительного бортового алгоритма, уточняющего орбитальные параметры космического объекта и прогнозирующего минимальное расстояние между космическим аппаратом и космическим объектом, показана в источниках информации: «Наведение в космосе» / Ричард Беттин. - М.: Машиностроение, 1966 - (Д7), «Введение в теорию полета искусственных спутников земли» / Эльясберг П.Е. - М.: Наука, 1965 - (Д8).

Класс B64G3/00 Средства наблюдения или слежения за полетом космических кораблей

способ предотвращения угрозы для планеты путем оценки размеров пассивных космических объектов -  патент 2527252 (27.08.2014)
способ радиотехнических доплеровских угломерных измерений космического аппарата и система для осуществления данного способа -  патент 2526401 (20.08.2014)
способ одновременного определения шести параметров движения космического аппарата при проведении траекторных измерений и система для его реализации -  патент 2525343 (10.08.2014)
способ обеспечения управления полетами космических аппаратов -  патент 2522774 (20.07.2014)
способ определения орбиты космического аппарата -  патент 2520714 (27.06.2014)
способ определения орбиты космического аппарата -  патент 2509041 (10.03.2014)
система геофизического обеспечения безопасности космических аппаратов -  патент 2508229 (27.02.2014)
способ обеспечения управления полетами космических аппаратов -  патент 2506207 (10.02.2014)
лазерное устройство контроля околоземного космического пространства -  патент 2502647 (27.12.2013)
способ определения и прогнозирования движения космического аппарата на низких орбитах, подверженного влиянию торможения в атмосфере -  патент 2463223 (10.10.2012)
Наверх