способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля

Классы МПК:G01N27/14 электрически нагреваемого тела в зависимости от изменения температуры 
Автор(ы):, ,
Патентообладатель(и):Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" (RU)
Приоритеты:
подача заявки:
2013-06-25
публикация патента:

Изобретение относится к измерительной технике, представляет собой способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля и может использоваться для анализа материалов, в частности металлов и сплавов в жидком и/или твердом состоянии, путём бесконтактного определения электрического сопротивления нагреваемого тела в зависимости от температуры. Способ состоит в том, что определяют угол поворота образца во вращающемся магнитном поле, создаваемом магнитным узлом в виде трех катушек трехфазного статора, измеряют значения тока, по значениям угла поворота и тока определяют удельное электрическое сопротивление, при этом измерение тока в одной из катушек осуществляют посредством мультиметра, а нулевые значения тока в любой из катушек используют для сигнализации о нарушении параметров магнитного поля. Устройство для реализации способа включает источник вращающегося магнитного поля с магнитной системой в виде трех катушек трехфазного статора, датчики тока, подключенные к катушкам, и компьютер, дополнительный датчик тока, мультиметр и устройство сигнализации, содержащее три вычитающих устройства, сумматор, пороговый элемент, оптический индикатор, входы мультиметра соединены с дополнительным датчиком тока, выход мультиметра соединен с одним из входов компьютера, входы каждого вычитающего устройства подключены к выходам двух датчиков тока, подключенных к катушкам, выходы вычитающих устройств соединены со входами сумматора, выход которого через пороговый элемент соединен с оптическим индикатором, выход порогового элемента является выходом устройства сигнализации и соединен с другим входом компьютера. Техническим результатом является обеспечение сокращения времени измерений, упрощение эксперимента при сохранении требуемой точности. 2 н. и 3 з.п. ф-лы, 1 ил. способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056

способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056

Формула изобретения

1. Способ бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля, при котором в каждой температурной точке при нагреве или охлаждении исследуемого образца металлического сплава в электропечи определяют угол поворота этого образца, расположенного на одном из концов упругой подвески во вращающемся магнитном поле, создаваемом магнитным узлом в виде трех катушек трехфазного статора, измеряют значения тока в катушках трехфазного статора, по значениям угла поворота и тока в катушках трехфазного статора определяют удельное электрическое сопротивление металлического сплава, отличающийся тем, что измерение значения тока в одной из катушек трехфазного статора осуществляют посредством мультиметра, а нулевые значения тока в любой из катушек трехфазного статора используют для сигнализации о нарушении параметров магнитного поля магнитного узла.

2. Устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля, включающее электропечь, в зоне нагрева которой на одном из концов упругой подвески закреплен тигель, в котором размещен исследуемый образец металлического сплава, источник вращающегося магнитного поля, магнитная система которого расположена вокруг электропечи в виде трех катушек трехфазного статора, электрически соединенных между собой, в частности, треугольником, датчики тока, подключенные к катушкам, и компьютер, отличающееся тем, что в устройство введены дополнительный датчик тока, мультиметр и устройство сигнализации, содержащее три вычитающих устройства, сумматор, пороговый элемент, оптический индикатор, дополнительный датчик тока подключен к соединительному проводу одной из катушек трехфазного статора, входы мультиметра соединены с дополнительным датчиком тока, выход мультиметра соединен с одним из входов компьютера, датчики тока используют в качестве индикаторов тока, входы каждого вычитающего устройства подключены к выходам двух датчиков тока, подключенных к катушкам, выходы вычитающих устройств соединены со входами сумматора, выход которого через пороговый элемент соединен с оптическим индикатором, выход порогового элемента является выходом устройства сигнализации и соединен с другим входом компьютера.

3. Устройство по п.2, отличающееся тем, что магнитный узел обладает функцией вращения магнитного поля с частотой, кратной частоте силовой сети.

4. Устройство по п.2, отличающееся тем, что в качестве датчиков тока используют трансформаторы тока.

5. Устройство по п.2, отличающееся тем, что в качестве дополнительного датчика тока используют образцовый резистор.

Описание изобретения к патенту

Изобретение относится к физике, а именно к анализу материалов путем бесконтактного определения электрического сопротивления нагреваемого тела в зависимости от температуры, в частности к определению относительной электропроводности металлов и сплавов в жидком и/или твердом состоянии.

Известны способ для бесконтактного измерения электрического сопротивления металлического твердого образца или его расплава методом вращающегося магнитного поля и устройство для его осуществления - см. пат. РФ № 2299425 - аналог. Способ является относительным и заключается в том, что в каждой температурной точке, как при нагреве, так и при охлаждении, посредством отраженного светового луча по оптической шкале определяют угол поворота способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 исследуемого металлического сплава, расположенного в электропечи на одном из концов подвески во вращающемся магнитном поле, создаваемом магнитным узлом, подключенным к трехфазной силовой сети и размещенным в зоне нагрева исследуемого сплава снаружи электропечи, определяют токи Ii, протекающие через каждую из катушек этого магнитного узла, выполненного в виде трехфазного статора, после чего продолжают последующие операции способа и вычисляют удельное электрическое сопротивление способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 по расчетной формуле:

способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056

где m, m0 - массы исследуемого и эталонного образцов; d, d0 - плотности исследуемого и эталонного образцов; способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 0 - удельное электрическое сопротивление эталона; способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 , способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 0 - углы закручивания исследуемого и эталонного образцов, определяемые по отклонениям отраженного светового луча на оптической шкале; I, I0 - ток, проходящий по катушкам магнитного узла, являющегося источником вращающегося магнитного поля при исследовании образца и эталона.

Известны способ безэлектродного измерения электрического сопротивления металлов в твердом и жидком состоянии и установка для его реализации - см. А. В. Рябина и др. «Безэлектродный метод измерения электросопротивления металлов в твердом и жидком состоянии и установка для его реализации», журн. «Расплавы», 2009, № 1, с.36-42 - аналог. Определяют угол поворота способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 исследуемого сплава, расположенного в тигле на подвеске во вращающемся магнитном поле, создаваемом магнитным узлом, размещенным в зоне нагрева исследуемого сплава снаружи электропечи, и определяют токи Ii, протекающие через катушки этого магнитного узла, выполненного в виде трехфазного статора, после чего вычисляют удельное электрическое сопротивление способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 исследуемого металлического сплава. Для определения токов Ii и индикации целостности электрических цепей магнитного узла используют три амперметра Д-553, имеющих класс точности 0,2.

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является способ для бесконтактного измерения удельного сопротивления методом вращающегося магнитного поля - см. Г.В. Тягунов и др. «Измерение удельного электросопротивления методом вращающегося магнитного поля», журн. «Заводская лаборатория. Диагностика материалов». М., 2003, № 2, том 69, 35÷37 - прототип. Способ заключается в том, что в каждой температурной точке при нагреве или охлаждении исследуемого образца металлического сплава в электропечи определяют угол поворота этого образца, расположенного на одном из концов упругой подвески во вращающемся магнитном поле, создаваемом магнитным узлом в виде трех катушек трехфазного статора, измеряют значения тока в катушках трехфазного статора, по значениям угла поворота и тока в катушках трехфазного статора определяют удельное электрическое сопротивление металлического сплава. При этом индукционные токи в образце создают магнитный момент. Образец взаимодействует с внешним магнитным полем, создается вращательный механический момент, которому противодействует упругость нити. При фиксированном значении параметров нити, магнитного поля, в частности, тока Ii, в катушках магнитного узла, геометрии, массы и плотности эталонного и изучаемого образцов удельное электрическое сопротивление способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 однозначно связано с углом отклонения способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 (или закручивания) как эталона, так и образца, который определяется по отклонению отраженного светового луча на шкале. Кроме того, измеряют токи Ii, по ним вычисляют средний ток Iср, который и подставляют в формулу (1).

Наиболее близким к предлагаемому изобретению по технической сущности и достигаемому результату является устройство для бесконтактного измерения удельного сопротивления методом вращающегося магнитного поля - см. Г.В. Тягунов и др. «Измерение удельного электросопротивления методом вращающегося магнитного поля», журн. «Заводская лаборатория. Диагностика материалов». М., 2003, № 2, том 69, 35÷37 - прототип, содержащее электропечь, в зоне нагрева которой на одном из концов упругой подвески закреплен тигель, в котором размещен исследуемый образец металлического сплава, источник вращающегося магнитного поля, магнитная система которого расположена вокруг электропечи в виде трех катушек трехфазного статора, электрически соединенных между собой, в частности, треугольником, датчики тока, подключенные к катушкам, и компьютер.

Недостатком аналогов и прототипа является то, что для реализации требуемой точности определения способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 , например, 3% - см. прототип, при измерениях, проводимых в каждой температурной точке как при нагреве, так и охлаждении исследуемого сплава, считывают значения токов Ii; в каждой катушке магнитного узла, затем усредняют эти данные, вычисляют среднее значения тока Icp и используют его для окончательных вычислений. При этом индикацию целостности электрических цепей магнитного узла осуществляют путем наблюдения за наличием ненулевых показаний измерителей тока, но сигнализация о нарушении этой целостности отсутствует. Это вводит элемент субъективности, усложняет и удорожает эксперименты и требует дополнительного времени для измерений.

Задачей предлагаемого изобретения является обеспечение сокращения времени измерений, упрощение и удешевление эксперимента при сохранении требуемой точности.

Для решения поставленной задачи предлагаются способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля.

Способ бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля, при котором в каждой температурной точке при нагреве или охлаждении исследуемого образца металлического сплава в электропечи определяют угол поворота этого образца, расположенного на одном из концов упругой подвески во вращающемся магнитном поле, создаваемом магнитным узлом в виде трех катушек трехфазного статора, измеряют значения тока в трехфазном статоре, по значениям угла поворота и тока в катушках трехфазного статора определяют удельное электрическое сопротивление металлического сплава, ОТЛИЧАЮЩИЙСЯ тем, что измерение значения тока в одной из катушек трехфазного статора осуществляют посредством мультиметра, а нулевые значения тока в любой из катушек трехфазного статора используют для сигнализации о нарушении параметров магнитного поля магнитного узла.

Устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля, включающее электропечь, в зоне нагрева которой на одном из концов упругой подвески закреплен тигель, в котором размещен исследуемый образец металлического сплава, источник вращающегося магнитного поля, магнитная система которого расположена вокруг электропечи в виде трех катушек трехфазного статора, электрически соединенных между собой, в частности, треугольником, датчики тока, подключенные к катушкам, и компьютер, ОТЛИЧАЮЩЕЕСЯ тем, что в устройство введены дополнительный датчик тока, мультиметр и устройство сигнализации, содержащее три вычитающих устройства, сумматор, пороговый элемент, оптический индикатор, дополнительный датчик тока подключен к соединительному проводу одной из катушек трехфазного статора, входы мультиметра соединены с дополнительным датчиком тока, выход мультиметра соединен с одним из входов компьютера, датчики тока используют в качестве индикаторов тока, входы каждого вычитающего устройства подключены к выходам двух датчиков тока, подключенных к катушкам, выходы вычитающих устройств соединены со входами сумматора, выход которого через пороговый элемент соединен с оптическим индикатором, выход порогового элемента является выходом устройства сигнализации и соединен с другим входом компьютера.

Кроме того, магнитный узел обладает функцией вращения магнитного поля с частотой, кратной частоте силовой сети.

Кроме того, в качестве датчиков тока используют трансформаторы тока.

Кроме того, в качестве дополнительного датчика тока используют образцовый резистор.

Отличительные признаки предложенных технических решений - способа и устройства - обеспечивают технический результат: сокращение времени измерений, упрощение и удешевление эксперимента при сохранении требуемой точности.

Предлагаемое изобретение поясняется блок-схемой предлагаемого устройства, приведенной на чертеже.

Устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля содержит электропечь с тиглем, содержащим исследуемый сплав (на схеме не показаны), магнитный узел 1, выполненный как трехфазный статор в виде трех катушек 2, 3, 4, датчики тока 5, 6, 7, дополнительный датчик тока 8, мультиметр 9, компьютер 10, устройство сигнализации 11, состоящее из вычитающих устройств 12, 13, 14, сумматора 15, порогового элемента 16, оптического индикатора 17.

Магнитный узел 1 общей мощностью 650 Вт питается от силовой 3-фазной сети, стабилизированной посредством стабилизатора напряжения «Штиль 6000 3Р» (на схеме не показано) в пределах +/-7%, размещен вокруг электропечи в области зоны нагрева тигля с исследуемым образцом. Катушки 2, 3, 4 одинаковы и имеют парную симметричную конструкцию. Три датчика тока 5, 6, 7 выполнены в виде тороидальных трансформаторов тока ТТ43065 на 5 А фирмы «Гаммамет», г. Екатеринбург. Сквозь каждый из них пропущен соответствующий провод, подключенный к одному из концов каждой из катушек 2, 3, 4. Кроме того, в качестве датчиков тока 5, 6, 7 могут быть использованы, например, образцовые прецизионные сопротивления с погрешностью не больше 0,1%, или датчики Холла. Дополнительный датчик тока 8 выполнен в виде прецизионного резистора номиналом 0,1 Ом с погрешностью 0,1%. Прецизионный мультиметр 9 типа В7-62 на 4,5 знака снабжен стандартным интерфейсом RS232 для соединения с компьютером 10, который выполнен на основе Pentium - 4 и является управляющим и вычисляющим для всей лабораторной установки. Устройство сигнализации 11 содержит три одинаковых вычитающих устройства 12, 13, 14 и сумматор 15 резистивного типа, выполненные на четырех операционных усилителях микросхемы счетверенного усилителя LM324. Пороговый элемент 16 представляет собой триггер Шмитта, выполненный, например, на сдвоенном операционном усилителе LM 358, оптический индикатор 17 - светодиод АЛ 307. Устройство сигнализации 11 может быть полностью выполнено в виде виртуального блока, входящего в состав компьютера 10 с соответствующим программным обеспечением.

Способ осуществляют следующим образом. Проводят все требуемые подготовительные операции способа, после которых включают магнитный узел 1. При этом с датчиков тока 5, 6, 7 сигнал в виде напряжения поступает на входы трех вычитающих устройства 12, 13, 14 устройства сигнализации 11. Если нет обрывов в катушках 2, 3, 4, то отсутствуют сигналы на входах сумматора 15 и на выходе порогового элемента 16. Оптический индикатор 17 не светится. Если имеется обрыв хоть в одной из катушек 2, 3, 4, появляется разница в сигналах датчиков тока 5, 6, 7, на выходе вычитающих устройств 12, 13, 14 устройства сигнализации 11 появляется отличный от нуля сигнал, который поступает через сумматор 15 на пороговый элемент 16, который формирует сигнал, достаточный для срабатывания оптического индикатора 17. При этом можно подключить к датчикам тока 5, 6, 7, например трансформаторам тока, недорогие малогабаритные стрелочные микроамперметры, например, типа М47621 или М478 с выпрямительным диодом каждый, для использования их в качестве индикаторов как наличия, так и оценочного значения величины тока в каждой из катушек. При этом ток магнитного узла 1 определяют только в одной из катушек 2, 3, 4 посредством мультиметра 9, подключенного к дополнительному датчику тока 8, точность которого не хуже 0,1%. Это позволяет обойтись одним точным прибором вместо трех и использовать недорогие стрелочные индикаторы как индикаторы тока.

Пример. Проведено сравнительное определение способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 сплава Al-Co в диапазоне температур +(830÷1200)°C по 13 температурным точкам с использованием, во первых, показаний одного мультиметра 9, во вторых, показаний трех аналогичных мультиметров, подключенных по одинаковым схемам к каждой из трех катушек 2, 3, 4, с последующим усреднением этих показаний Ii в виде Icp и использованием Icp как величины тока I для расчетов по вышеприведенной формуле (1). В конечном, вычисленном по экспериментальным данным значении способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 , его величина закономерно изменялась от способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 =39,71 (при +830°C) до способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 =51,33 (при +1200°C)·10-8 Ом·м. Различие способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 для обоих методов в среднем +/-0,86·10-8 Ом·м, способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 =1,05·10-8 Ом·м, т.е. разница в значении способ и устройство для бесконтактного измерения удельного электрического   сопротивления металлического сплава методом вращающегося магнитного   поля, патент № 2531056 , которая является общей относительной ошибкой, составляет примерно 2%. По литературным данным, аналогичная допустимая ошибка составляет 3% - см. прототип. Таким образом, погрешность 2%, которая может быть обусловлена использованием показаний одного мультиметра 9, допустима и обеспечивает сохранение точности экспериментов. Кроме того, надо учитывать погрешности сомножителей формулы (I): например, погрешность определения плотности d составляет величину (1,5÷1,8)%, а нестабильность сетевого источника питания магнитного узла 1, которая обусловливает нестабильность тока I, протекающего по трем катушкам 2, 3, 4 трехфазного статора может составлять, как указано выше, (6÷7)% даже после стабилизатора. С другой стороны, уменьшение массива данных в три раза, например с 39 до 13, по числу используемых в эксперименте температурных точек, при практическом сохранении точности ускоряет, упрощает и удешевляет эксперимент.

Технические решения, содержащие вышеуказанные совокупности отличительных признаков, а также совокупности ограничительных и отличительных признаков, не выявлены в известном уровне техники, что при достижении вышеописанного технического результата позволяет считать предложенные технические решения имеющими изобретательский уровень.

Класс G01N27/14 электрически нагреваемого тела в зависимости от изменения температуры 

датчик водорода -  патент 2525643 (20.08.2014)
способ измерения концентрации метана и устройство для осуществления этого способа -  патент 2510499 (27.03.2014)
полупроводниковый газовый сенсор -  патент 2509303 (10.03.2014)
способ определения аномалий на политермах свойств высокотемпературных металлических расплавов (варианты) -  патент 2477852 (20.03.2013)
способ неразрушающего теплового контроля состояния арматуры в протяженных железобетонных изделиях -  патент 2473892 (27.01.2013)
способ определения газочувствительных характеристик и электрофизических свойств газочувствительного элемента в частотной области -  патент 2439547 (10.01.2012)
газоанализатор водорода -  патент 2371710 (27.10.2009)
способ определения концентрации водорода в присутствии газообразных примесей -  патент 2371709 (27.10.2009)
способ определения концентрации примеси газа в воздухе -  патент 2279066 (27.06.2006)
установка для определения водорода в топливных таблетках из двуокиси урана -  патент 2253915 (10.06.2005)
Наверх