состав для ликвидации перетоков флюидов за эксплуатационными колоннами в нефтегазовых скважинах

Классы МПК:E21B33/138 глинизация стенок скважины, закачивание цемента в поры и трещины породы 
C09K8/50 составы для глинизации стенок скважин, те составы для временного уплотнения стенок скважин
Автор(ы):, , , , , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кубанский государственный технологический университет" (ФГБОУ ВПО "КубГТУ") (RU)
Приоритеты:
подача заявки:
2013-04-05
публикация патента:

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для ликвидации межпластовых перетоков флюидов, ограничения водопритоков и поглощений как при строительстве, так и эксплуатации скважин. Состав содержит 20-25 мас.% бентонитовой глины, 55-60 мас.% углеводородной фракции, 5-10 мас.% соды кальцинированной и 5-15 мас.% портландцемента. Техническим результатом является повышение эффективности ликвидации перетоков флюидов за эксплуатационными колоннами в нефтегазовых скважинах и увеличение продолжительности их межремонтного периода. 2 пр.

Формула изобретения

Состав для ликвидации перетоков флюидов за эксплуатационными колоннами в нефтяных и газовых скважинах, содержащий бентонитовую глину и углеводородную фракцию, отличающийся тем, что дополнительно содержит соду кальцинированную и портландцемент, при следующем соотношении компонентов, мас.%:

Бентонитовая глина 20-25
Углеводородная фракция 55-60
Сода кальцинированная 5-10
Портландцемент 5-15

Описание изобретения к патенту

Изобретение относится к нефтяной и газовой промышленности и может быть использовано для ликвидации межпластовых перетоков флюидов, ограничения водопритоков и поглощений как при строительстве, так и эксплуатации скважин.

Известны составы на глиноцементной основе, применяемые для исправительного цементирования в нефтегазовых скважинах (например, при изоляции зон поглощения бурового раствора), содержащие 50-70% глино-порошка, 20-45% тампонажного цемента и около 5% инертного наполнителя, в качестве которого применяется керамзит, кварцевый песок и т.п.[1].

Известны составы, включающие цемент, гельцемент, а также гипсоцементные [1] и алебастроцементные смеси, приготавливаемые на основе дизельного топлива [2] - аналог.

Общий недостаток указанных составов [1, 2] - невозможность обеспечения надежного разобщения пластов - коллекторов с различными пластовыми давлениями и разным флюидосодержанием (нефть, нефть+газ+вода, газ, газ+газовый конденсат+вода и т.п.), что неминуемо вызывает:

- возникновение заколонных перетоков флюидов;

- потери углеводородного сырья;

- загрязнение недр и источников водоснабжения;

- ухудшение экологической обстановки и другим негативным последствиям.

При этом тампонажные составы должны одновременно удовлетворять противоречивым требованиям: с одной стороны они не должны отслаиваться от обсадных труб и раскрашиваться под действием знакопеременных нагрузок на обсадную колонну (т.е. быть пластичными), а с другой - противостоять перепадам давления в заколонном пространстве, вызывающих выдавливание легкотекучих (например, полимерных составов), нашедших применение в практике ликвидации перетоков флюидов за эксплуатационными колоннами в нефтегазовых скважинах.

При этом наибольшее применение нашли ремонтные составы на основе соляро-бентонитовых (СБС) и конденсато-бентонитовых (КБС) смесей, содержащих 25-30% бентонитовой глины, 70-75% углеводородной фракции (дизельное топливо - солярка или газовый конденсат) - прототип [3].

Однако опыт применения указанных ремонтных составов свидетельствует о непродолжительности достигаемого эффекта при высоких градиентах давлений и высокой приемистости заколонного пространства в изолируемой зоне (межколонные давления появляются спустя несколько месяцев после проведения ремонтно-изоляционных работ).

Задачей изобретения является увеличение продолжительности межремонтного периода скважин при высоких градиентах давлений и высокой приемистости в зоне изоляционных работ.

Техническим результатом изобретения является повышение герметизирующих свойств составов на основе СБС и КБС для ликвидации перетоков флюидов за эксплуатационными колоннами в нефтегазовых скважинах.

Технический результат достигается тем, что состав для ликвидации перетоков флюидов за эксплуатационными колоннами в нефтяных и газовых скважинах содержит бентонитовую глину (20-25%) и углеводородную фракцию (55-60%), дополнительно вводят соду кальцинированную (Na 2CO3) (5-10%) и портландцемент (5-15% по массе). Это делается в целях увеличения степени диспергирования, увеличения коэффициента набухания бентонитовых глин, так и формирования внутри ремонтного состава твердой фазы (элементов «скелета»), образующейся в результате реакции ионного обмена и отверждения ремонтного состава. Наличие портландцемента способствует упрочнению структуры образующегося тела и повышению изолирующих свойств состава.

Указанную смесь тщательно перемешивают, в нее добавляют углеводородную фракцию (нефть, газовый конденсат, дизельное топливо и др.) и ее закачивают в заколонное пространство скважин до появления роста давления нагнетания (заполнения изолируемых каналов), а затем в заколонное пространство под давлением нагнетают буферную пачку технической воды, которая в полном объеме замещает углеводородную фракцию в тампонажной смеси.

После этого, в результате протекания физико-химических процессов:

- увеличивается степень диспергирования бентонитовых глин, что способствует лучшей герметизации заколонного пространства скважин;

- ионы кальция, находящиеся в составе бентонитовых глин, взаимодействуя с Na2CO3 , выпадают в твердый осадок CaCO3;

- происходит отверждение портландцемента, который (вместе с CaCO 3) формирует элементы «скелета», препятствующего прорыву газа через сформировавшийся за эксплуатационной колонной тампон.

Из производственного опыта известно, что осадок CaCO3 обладает хорошей адгезией к металлу труб и образует на их наружной поверхности плотное карбонатное покрытие - корку с антикоррозионными свойствами, а указанная буферная пачка с целью повышения эффективности замещения жидких углеводородов в тампонажной смеси может содержать ПАВ, что также может способствовать лучшей герметизации заколонного пространства и увеличению продолжительности межремонтного периода скважин.

Установлено, что добавление портландцемента способствует:

- ускорению процесса образования изолирующего тампона;

- снижению возможности прорыва газовой фазы через несформировавшийся ремонтный состав;

- повышению устойчивости ремонтного состава к разрушению при высоких градиентах давлений.

Следует отметить, что коэффициенты набухания различных глин под действием воды значительно отличаются друг от друга [4]. Так, коэффициент набухания - K, определенный по методике Жигача-Ярова как отношение конечного объема пробы к первоначальному, составляет:

- для Нефтеабадского глинопорошка - 2,17;

- для Саригюхского бентонита - 3,20;

- для Асконского бентонита - 5,28.

Кроме того, физико-механические свойства портландцементов различных марок значительно отличаются друг от друга.

При подборе рецептур ремонтных составов для проведении работ по ликвидации перетоков флюидов за эксплуатационными колоннами, необходимо применять глины с наибольшими коэффициентами набухания и портландцементы с известными свойствами.

Примеры конкретного выполнения на специальной установке:

В металлическую трубку с внутренним диаметром 40 мм (снизу установлены мелкий металлический фильтр-сетка и заглушка с отводом для фильтрата) заливали тампонажную смесь на высоту 60 мм. Выше смеси заливали воду с добавкой ПАВ на высоту 60 мм. Установку помещали в определенные температурные условия и сверху (над водой) создавали избыточное давление 0,1-0,3 МПа.

Пример 1. Тампонажный состав в % по весу:

Саригюхский бентонит 30
Дизельное топливо 55
Сода кальцинированная 5
Портландцемент Новороссийский 10

Температура опыта 45°C, избыточное давление 0,3 МПа, время воздействия - 30 мин. За время опыта количество выделившегося фильтрата (дизельного топлива) составило 30 см3. Через 24 часа образец тампонажного состава был извлечен из трубки. Установлено, что образец увеличился в размере в результате набухания глины на 20%. Образец представлял собой плотную массу не текучего состояния с относительно невысокой прочностью.

Пример 2. Тампонажный состав в % по весу:

Саригюхский бентонит 20
Дизельное топливо 55
Сода кальцинированная 10
Портландцемент Новороссийский 15

Температура опыта 45°C, избыточное давление 0,2 МПа, время воздействия - 30 мин. За время опыта количество выделившегося фильтрата (дизельного топлива) составило 25 см3. Через 24 часа образец тампонажного состава был извлечен из трубки. Установлено, что образец увеличился в размере в результате набухания глины на 10%. Образец представлял собой плотное тело с относительно определенной прочностью.

Указанный состав может быть также эффективно использован для ограничения водопритоков с скважину из нижележащих водоносных пластов.

Источники информации

1. Булатов А.И. Тампонажные материалы и технология цементирования скважин. М., Недра, 1991 г., 251 с.

2. Поляков Л.П., Разуваев В.Д., Голиков А.Е. Новый способ изоляции зон поглощения промывочной жидкости при бурении скважин. Научно-технический сборник «Бурение», № 9, 1965 г., с.8-11.

3. Басарыгин Ю.М., Макаренко П.П., Мавромати В.Д. Ремонт газовых скважин. М.: Издательство «Недра», 1998 г., 271 с.

4. Мариампольский Н.А., Прокошин А.Г., Савенок О.В. Механизм действия электроактивации на реологические и фильтрационные свойства буровых, промывочных и тампонажных растворов // Гипотезы, поиск, прогнозы: сб. - Краснодар. - 2000. - Вып.9. - С.288-292.

Скачать патент РФ Официальная публикация
патента РФ № 2527443

patent-2527443.pdf

Класс E21B33/138 глинизация стенок скважины, закачивание цемента в поры и трещины породы 

селективный состав для ремонтно-изоляционных работ в нефтяных и газовых скважинах -  патент 2529080 (27.09.2014)
состав для изоляции притока воды в добывающие нефтяные скважины -  патент 2527996 (10.09.2014)
улучшенные способы размещения и отклонения текучих сред в подземных пластах -  патент 2527988 (10.09.2014)
способ разработки залежей высоковязких нефтей или битумов при тепловом воздействии -  патент 2527051 (27.08.2014)
способ изоляции водопроявляющих пластов при строительстве скважины -  патент 2526061 (20.08.2014)
состав для изоляции водопритока в скважине -  патент 2526039 (20.08.2014)
способ ограничения водопритока в скважину -  патент 2525079 (10.08.2014)
гипсомагнезиальный тампонажный раствор -  патент 2524774 (10.08.2014)
тампонажный облегченный серосодержащий раствор -  патент 2524771 (10.08.2014)
полимерный состав для внутрипластовой водоизоляции -  патент 2524738 (10.08.2014)

Класс C09K8/50 составы для глинизации стенок скважин, те составы для временного уплотнения стенок скважин

состав для изоляции водопритока в скважине -  патент 2526039 (20.08.2014)
армированные эластомеры -  патент 2520794 (27.06.2014)
способ использования вязкоупругих поверхностно-активных веществ -  патент 2507232 (20.02.2014)
изоляционный раствор и способ изоляции притока пластового флюида или газа -  патент 2495902 (20.10.2013)
способ изоляции зон водопритока в скважине -  патент 2494229 (27.09.2013)
способ приготовления состава для изоляции зон поглощений в скважине -  патент 2494228 (27.09.2013)
способ ограничения водопритока в скважину -  патент 2494225 (27.09.2013)
способ изоляции зоны осложнения в скважине с карбонатными коллекторами -  патент 2494224 (27.09.2013)
способ получения акрилового реагента для ограничения притока вод в нефтяную скважину -  патент 2485158 (20.06.2013)
состав для изоляции водопритока и поглощающих зон в скважине и способ его применения -  патент 2483093 (27.05.2013)
Наверх