способ разрушения многокомпонентных изделий

Классы МПК:E21C37/18 с помощью электрических способов и устройств 
B02C19/18 использование для измельчения вспомогательных физических эффектов, например воздействия ультразвука, облучения 
Автор(ы):
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" (RU)
Приоритеты:
подача заявки:
2013-05-13
публикация патента:

Изобретение относится к области переработки и утилизации вторичного сырья. Способ разрушения многокомпонентных изделий, состоящих из металлических элементов с прикрепленными к ним изоляционными элементами, включающий создание в них поля механических напряжений, превышающих предел их механической прочности от воздействия мощных ударных волн, источником которых является канал разряда, сформированный в воде между электродами, установленными в корпусе и подключенными к генератору высоковольтных импульсов, отличающийся тем, что для создания поля механических напряжений в изоляционных элементах изделий, превышающих предел их механической прочности, используют разряды с градиентом энергии 0.8-0.9 Дж/мм, которые осуществляют на границе раздела воды и разрушаемых изоляционных элементов. Изобретение позволяет извлекать металлические элементы без повреждений и снизить энергозатраты на процесс разрушения. 1 ил., 1 табл.

способ разрушения многокомпонентных изделий, патент № 2526947

Формула изобретения

Способ разрушения многокомпонентных изделий, состоящих из металлических элементов с прикрепленными к ним изоляционными элементами, включающий создание в них поля механических напряжений, превышающих предел их механической прочности от воздействия мощных ударных волн, источником которых является канал разряда, сформированный в воде между электродами, установленными в корпусе и подключенными к генератору высоковольтных импульсов, отличающийся тем, что для создания поля механических напряжений в изоляционных элементах изделий, превышающих предел их механической прочности, используют разряды с градиентом энергии 0.8-0.9 Дж/мм, которые осуществляют на границе раздела воды и разрушаемых изоляционных элементов.

Описание изобретения к патенту

Изобретение относится к области переработки и утилизации вторичного сырья.

Известен способ электроимпульсного разрушения твердых тел. (Усов А.Ф, Семкин Б.В, Зиновьев Н.Т. Переходные процессы в установках электроимпульсных технологий, Л.: Наука,1987, с.6-16). Разрушение твердых тел происходит от воздействия мощных ударных волн, источником которых является канал разряда, сформированный между электродами, подключенными к генератору высоковольтных импульсов. Недостатком указанного технического решения являются высокие энергозатраты на процесс разрушения и повреждаемость металлических деталей многокомпонентных изделий при использовании разрядов с энергией в сотни джоулей.

Наиболее близким по технической сущности и достигаемому результату к настоящему изобретению является способ электрогидравлического разрушения твердых тел по патенту RU 2038150. Способ электрогидравлического разрушения твердых тел осуществляют путем создания в твердом теле поля механических напряжений, превышающих предел его прочности от воздействия на него мощных ударных волн, источником которых является канал разряда, сформированный в воде между электродами, установленными в воде и подключенными к генератору высоковольтных импульсов.

Недостатком указанного технического решения является недостаточная сохранность металлических элементов изделия из-за появления на них прижогов, обусловленных их контактом с плазмой канала разряда и относительно высокие энергозатраты, связанные с применением достаточно мощных импульсных разрядов.

Задача - повышение степени сохранности металлических элементов изделий и снижение энергозатрат на процесс разрушения.

В предлагаемом способе разрушения многокомпонентных изделий, состоящих из металлических элементов с прикрепленными к ним изоляционными элементами, создают в них поля механических напряжений, превышающих предел их механической прочности с помощью ударных волн, генерируемых каналом разряда, сформированного между электродами, установленными в корпусе и подключенными к генератору высоковольтных импульсов. Для создания поля механических напряжений, превышающих предел механической прочности в изоляционных элементах, используют разряды с градиентом энергии 0,8-0,9 Дж/мм, которые осуществляют на границе раздела воды и разрушаемых изоляционных элементов.

Возможность разрушения многокомпонентных изделий, состоящих из металлических элементов с прикрепленными к ним изоляционными элементами предлагаемым способом, обусловлена использованием разряда по границе раздела вода-твердое тело-изоляционные элементы, что позволяет исключить протекание через металлические элементы разрядного тока и тем самым предотвратить появление на них прижогов в местах контакта с плазмой канала разряда и создать разряд при меньшей напряженности электрического поля (Семкин Б.В. Электрический взрыв в конденсированных средах. - Томск.: ТПИ, 1979, с.6-16). Это позволяет при значительно меньших, чем в известном способе, энергозатратах осуществить разрушение изоляционных элементов.

Пример конкретного исполнения.

На чертеже приведена схема установки для реализации заявляемого способа. Она содержит дроссель насыщения 1, повысительно-выпрямительное устройство 2 (ВТМ-20/50), генератор высоковольтных импульсов 3, состоящий из конденсаторов 4 и воздушного разрядника 5, рабочую камеру 6, заполненную дистиллированной водой и содержащую систему электродов 7 коаксиальной конструкции, изделие содержащее металлические элементы 8, впаяные в изоляционные элементы 9 в узлах 10.

Для конкретного выполнения заявляемого способа выбирались следующие параметры установки. Емкость каждого конденсатора 4-С=10 4пФ. Величина межэлектродного промежутка 4 мм. Для варьирования градиента энергии на межэлектродном промежутке изменяют амплитуду импульса от 20 до 25 кВ. В качестве объекта воздействия использованы бракованные изделия электронно-оптических систем кинескопов, состоящие из металлических элементов, объединенные с помощью изоляционных элементов в единную конструкцию. Разрушения изделий проведены в дистиллированной воде с удельным сопротивлением 10 6 Ом·см.

Способ осуществляют следующим образом. Изделие закрепляют в рабочей камере, в которую заливают дистиллированную воду. Электроды 7 размещают на поверхности изоляционных элементов 9 в узлах 10, где они соединены с металлическими элементами 8 и затем включают установку. При этом происходит зарядка конденсаторов 4 генератора высоковольтных импульсов 3 до напряжения пробоя воздушного разрядника 5. При срабатывании воздушного разрядника 5 происходит разряд конденсаторов 4 в системе электродов 7 коаксиальной конструкции с градиентом энергии 0.8, 0.85, 0.9 Дж/мм и образованием канала разряда по границе раздела воды и разрушаемых изоляционных элементов 9. Генерируемые каналом разряда ударные волны вызывают разрушение изоляционных элементов 9 в узлах 10 изделия. При этом металлические элементы 8 полностью освобождаются от изоляционных элементов 9 при полной сохранности всех металлических деталей. В таблице представлены результаты экспериментов.

Из таблицы следует, что в случае использования разрядов с градиентом энергии 0.8-0.9 Дж/мм на границе раздела воды и разрушаемых изоляционных элементов 9 в узлах 10 происходит эффективное разрушение изоляционных элементов 9, сопровождающееся полным отделением кусков изоляции от металлических деталей. При тщательном осмотре металлических элементов 8 под микроскопом механических дефектов, а также прижогов не обнаружено, а извлеченные металлические элементы полностью соответствуют ГОСТу и могут быть повторно использованы в производстве.

Вне этого предела способ не эффективен, т.к. при использовании разрядов с градиентом энергии менее 0.8 Дж/мм, например 0.6 Дж/мм, хотя и происходит разряд между электродами, но энергии, выделенной в канале разряда, при этом недостаточно для эффективного разрушения изоляционных элементов изделия, поэтому полного отделения изоляции от металлических элементов не наблюдается. На ряде из них остаются кусочки изоляции. При еще меньших градиентах энергии, например, 0.36 Дж/мм разрушение изолятора не происходит из-за недостаточной интенсивности гидродинамических возмущений. Использование разрядов с градиентом энергии более 0.9 Дж/мм энергетически невыгодно и, кроме того, на некоторых металлических элементах имеют место механические дефекты, обусловленные деформацией.

Таким образом, осуществление способа разрушения многокомпонентных изделий, в данном случае узлов электронно-оптических систем наиболее целесообразно, когда градиент энергии разрядов составляет 0.8-0.9 Дж/мм. Вне этого предела способ либо вообще не выполним, либо не эффективен из-за появления механических дефектов на металлических элементах и достаточно высоких энергозатрат.

Разрушение изоляционных элементов изделий по способу-прототипу неприемлемо из-за высоких энергозатрат и повреждения металлических элементов изделий мощными динамическими воздействиями при разрядах с градиентом энергии, в десятки раз превышающих заявляемый режим.

Наиболее перспективное применение данного способа - переработка отходов и непригодных для эксплуатации электрорадиоламповых изделий с целью возврата в производство металлов, стекла и керамики, а также деталей, пригодных для повторного применения.

Способ разрушения многокомпонентных изделий

Таблица
№ п/пАмплитуда импульса, кВ Энергия импульса, Дж Градиент энергии, Дж/ммРезультат воздействия Примечание
1 171,45 0,36Изоляция не разрушена. способ разрушения многокомпонентных изделий, патент № 2526947
222 2,420,6 Нет полного отделенияспособ разрушения многокомпонентных изделий, патент № 2526947
способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 металлических элементов от способ разрушения многокомпонентных изделий, патент № 2526947
способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 изоляции.способ разрушения многокомпонентных изделий, патент № 2526947
325 3,200,8 Изоляция разрушена. Металлические элементы полностью Предлагаемый способ
способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 отделены от изоляции и не имеют дефектов. способ разрушения многокомпонентных изделий, патент № 2526947
426 3,80,85 Изоляция разрушена. Металлические элементы полностью Предлагаемый способ
способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 отделены от изоляции и не имеют дефектов. способ разрушения многокомпонентных изделий, патент № 2526947
527 3,640,9 Изоляция разрушена. Металлические элементы полностью Предлагаемый способ
способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 отделены от изоляции и не имеют дефектов. способ разрушения многокомпонентных изделий, патент № 2526947
630 4,51,13 Эффективное разрушение изоляции. На некоторых способ разрушения многокомпонентных изделий, патент № 2526947
способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 металлических элементах способ разрушения многокомпонентных изделий, патент № 2526947
способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 механические дефекты. способ разрушения многокомпонентных изделий, патент № 2526947
732 5,11,3 Эффективное разрушение изоляции. Дефекты на всех способ разрушения многокомпонентных изделий, патент № 2526947
способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 способ разрушения многокомпонентных изделий, патент № 2526947 металлических элементах способ разрушения многокомпонентных изделий, патент № 2526947

Класс E21C37/18 с помощью электрических способов и устройств 

способ электроимпульсного бурения скважин, электроимпульсной буровой наконечник -  патент 2524101 (27.07.2014)
устройство лазерно-механического бурения кремнеземсодержащих материалов -  патент 2523901 (27.07.2014)
способ лазерно-механического бурения кремнеземсодержащих материалов -  патент 2521260 (27.06.2014)
способ комбинированного лазерно-механического бурения кремнеземсодержащих материалов -  патент 2516422 (20.05.2014)
способ электроразрядного разрушения твердых материалов -  патент 2500889 (10.12.2013)
электроимпульсный буровой снаряд -  патент 2500873 (10.12.2013)
устройство для подрезания блоков горных пород высоковольтными разрядами -  патент 2490453 (20.08.2013)
электромагнитный импульсный механизм -  патент 2487996 (20.07.2013)
электроимпульсный погружной бур -  патент 2477370 (10.03.2013)
электроимпульсное буровое долото -  патент 2471987 (10.01.2013)

Класс B02C19/18 использование для измельчения вспомогательных физических эффектов, например воздействия ультразвука, облучения 

способ избирательного дробления алмазов -  патент 2492138 (10.09.2013)
бронекамера для измельчения изношенных покрышек -  патент 2471622 (10.01.2013)
способ переработки золотосодержащих полиметаллических руд, концентратов, вторичного сырья -  патент 2467802 (27.11.2012)
способ лазерной дезинтеграции сростков микрокомпонентов золоторудных концентратов -  патент 2455076 (10.07.2012)
способ электромагнитно-ультразвуковой дезинтеграции сростков микрокомпонентов золоторудных концентратов -  патент 2455072 (10.07.2012)
способ селективного разупрочнения и дезинтеграции материала, содержащего ферромагнитные компоненты -  патент 2449836 (10.05.2012)
способ измельчения материалов -  патент 2440850 (27.01.2012)
способ получения водоугольного топлива -  патент 2439131 (10.01.2012)
рабочий электрод электрогидравлической установки (варианты) -  патент 2433865 (20.11.2011)
способ измельчения твердых компонентов для изготовления смесевого ракетного твердого топлива -  патент 2425820 (10.08.2011)
Наверх