способ определения местоположения источника радиоизлучения

Классы МПК:G01S5/12 путем индикации в одной системе координат пеленгов различной формы, например гиперболической, круговой, эллиптической, радиальной
Автор(ы):, , , , ,
Патентообладатель(и):Марков Павел Николаевич (RU),
Маренков Игорь Александрович (RU),
Вагин Анатолий Исполитович (RU),
Чеботарь Игорь Викторович (RU),
Бережных Дмитрий Львович (RU),
Ряскин Роман Юрьевич (RU)
Приоритеты:
подача заявки:
2013-06-10
публикация патента:

Способ местоопределения источника радиоизлучения (ИРИ) относится к радиотехнике, а именно к пассивным системам радиоконтроля. Достигаемый технический результат - повышение точности местоопределения ИРИ, функционирующих в труднодоступной местности. Сущность изобретения заключается в предварительной доставке в предполагаемый район нахождения источника радиоизлучения (ИРИ) множества датчиков (не менее четырех), конструктивно размещенных на беспилотных летательных аппаратах (БЛА) класса "мини" типа "мультикоптер". В состав каждого БЛА-датчика входит блок навигационно-временного обеспечения (НВО), ненаправленная антенна, панорамный приемник и приемопередатчик. В качестве средства доставки и обслуживания БЛА-датчиков, а также для ретрансляции координатной информации, поступающей с них, и передачи команд управления с наземного пункта управления и обработки (НПУО), используется беспилотный или пилотируемый летательный аппарат (ЛА) среднего класса (ЛА-ретранслятор). После доставки в предполагаемый район нахождения источников радиоизлучения, по командам с НПУО, БЛА-датчики распределяют в пространстве. Совокупность БЛА-датчиков и ЛА-ретранслятор формально образуют в пространстве многопозиционную систему радиоконтроля. Используется свойство мультикоптеров принимать неподвижное состояние в пространстве, позволяющее снизить фактор динамичности системы и сформировать в воздухе подобие стационарных наземных пунктов приема (один из которых центральный, расположенный на минимальном расстоянии от ЛА-ретранслятора, а остальные - периферийные) разностно-дальномерной системы (РДС) местоопределения. По сигналам блока НВО определяются координаты в пространстве каждого БЛА-датчика и осуществляется их высокоточная привязка к собственной системе координат РДС и к единому времени, для этого информация о координатах периферийных БЛА-датчиков в сформированной РДС передается на центральный БЛА-датчик. Каждый БЛА-датчик, имеющий панорамный приемник, осуществляет поиск сигналов ИРИ в заданном частотном диапазоне. При обнаружении сигнала ИРИ осуществляется его оцифровка и передача с помощью передающего устройства приемопередатчика на центральный БЛА-датчик. На центральном БЛА-датчике по поступившим данным осуществляется определение местоположения ИРИ. 4 ил.

способ определения местоположения источника радиоизлучения, патент № 2526094

способ определения местоположения источника радиоизлучения, патент № 2526094 способ определения местоположения источника радиоизлучения, патент № 2526094 способ определения местоположения источника радиоизлучения, патент № 2526094 способ определения местоположения источника радиоизлучения, патент № 2526094

Формула изобретения

Способ определения местоположения источника радиоизлучения (ИРИ), основанный на измерении корреляционным методом временных задержек приема сигнала ИРИ относительно одного из Nспособ определения местоположения источника радиоизлучения, патент № 2526094 4 пространственно разнесенных пунктов (приема) радиоконтроля, при этом один из пунктов радиоконтроля является центральным (опорным) и осуществляет прием и обработку сигналов, а остальные осуществляют прием сигналов, отличающийся тем, что в предполагаемый район нахождения ИРИ доставляют посредством беспилотного или пилотируемого летательного аппарата (ЛА) среднего класса, одновременно являющегося носителем мультикоптеров и ретранслятором сигналов между наземным пунктом управления и обработки (НПУО), множество Nспособ определения местоположения источника радиоизлучения, патент № 2526094 4 пунктов радиоконтроля (датчиков), размещенных на БЛА типа "мультикоптер", каждый из которых содержит блок навигационно-временного обеспечения, ненаправленную антенну, панорамный приемник и приемопередатчик, распределяют в пространстве по команде с наземного пункта обработки и управления через ЛА-ретранслятор, назначают из множества датчиков центральный, который расположен на минимальном расстоянии от ЛА-ретранслятора, далее БЛА-датчики (пункты радиоконтроля) определяют свое местоположение с помощью блока навигационно-временного обеспечения, осуществляют частотный поиск, оцифровку обнаруженных сигналов и передачу на центральный БЛА-датчик (пункт радиоконтроля) данных о своем местоположении в пространстве, а также оцифрованные сигналы обнаруженного источника радиоизлучения, при этом центральный БЛА-датчик по поступившим данным от множества БЛА-датчиков определяет координаты ИРИ и осуществляет передачу данных на НПУО, где оператор оценивает точность местоопределения и принимает решение о дальнейшем перестроении множества БЛА-датчиков для формирования в пространстве разностно-дальномерной системы с учетом оптимального размещения в пространстве БЛА-датчиков (пунктов радиоконтроля), с целью повышения точности местоопределения координат ИРИ, формируя команды управления и передачу их через ЛА-ретранслятор на центральный БЛА-датчик формируемой многопозиционной системы местоопределения в пространстве.

Описание изобретения к патенту

Изобретение относится к области радиотехники, а именно к пассивным системам радиоконтроля, и, в частности, может быть использовано в системах местоопределения радиоизлучающих средств ОВЧ-УВЧ диапазона, функционирующих в труднодоступной местности.

Сущность изобретения заключается в предварительной доставке в предполагаемый район нахождения источника радиоизлучения (ИРИ) множества датчиков (не менее четырех), конструктивно размещенных на беспилотных летательных аппаратах (БЛА) класса "мини" типа "мультикоптер" (Фиг.1, см., например, Е. Ерохин, А. Коломиец «Мультикоптеры: новый вид», электронный ресурс - http://www.uav.ru/articles/multicopters.pdf. (дата обращения: 12.12.12 г.)). В состав каждого БЛА-датчика входит блок навигационно-временного обеспечения, ненаправленная антенна, панорамный приемник и приемопередатчик. В качестве средства доставки и обслуживания БЛА-датчиков, а также для ретрансляции координатной информации, поступающей с них и передачи команд управления с наземного пункта управления и обработки (НПУО), используется беспилотный или пилотируемый летательный аппарат (ЛА) среднего класса (ЛА-ретранслятор). После доставки в предполагаемый район нахождения источников радиоизлучения, по командам с наземного пункта управления и обработки, БЛА-датчики распределяют в пространстве. Совокупность БЛА-датчиков и ЛА-ретранслятор формально образуют в пространстве многопозиционную систему радиоконтроля. Используется свойство мультикоптеров принимать неподвижное состояние в пространстве, позволяющее снизить фактор динамичности системы и сформировать в воздухе подобие стационарных наземных пунктов приема (один из которых центральный, расположенный на минимальном расстоянии от ЛА-ретранслятора, а остальные - периферийные) разностно-дальномерной системы (РДС) местоопределения. По сигналам блока навигационно-временного обеспечения определяются координаты в пространстве каждого БЛА-датчика и осуществляется их высокоточная привязка к собственной системе координат разностно-дальномерной системы и к единому времени, для этого информация о координатах периферийных БЛА-датчиков в сформированной РДС передается на центральный БЛА-датчик. Каждый БЛА-датчик, имеющий панорамный приемник, осуществляет поиск сигналов ИРИ в заданном частотном диапазоне. При обнаружении сигнала ИРИ осуществляется его оцифровка и передача с помощью передающего устройства приемопередатчика на центральный БЛА-датчик. На центральном БЛА-датчике по поступившим данным осуществляется определение местоположения ИРИ.

Технический результат достигается тем, что БЛА-датчики на базе мультикоптеров могут быть доставлены в труднодоступный район предполагаемого функционирования ИРИ, где за счет использования свойства мультикоптеров принимать неподвижное состояние в пространстве, а также за счет их маневренности, появляется возможность формировать подобие стационарных наземных пунктов приема разностно-дальномерной системы местоопределения с оптимальным геометрическим фактором, что, в свою очередь, позволяет повысить точность определения координат ИРИ.

Достигаемым техническим результатом изобретения является повышение точности местоопределения ИРИ, функционирующих в труднодоступной местности.

Известен способ местоопределения ИРИ, близкий по технической сущности к заявляемому изобретению (см., например, Кондратьев B.C., Котов А.Ф., Марков Л.Н. Многопозиционные радиотехнические системы - М.: «Радио и связь», 1986. - 264 с), основанный на измерении корреляционным методом временных задержек приема сигнала ИРИ, относительно одного из Nспособ определения местоположения источника радиоизлучения, патент № 2526094 2 пространственно разнесенных пунктов радиоконтроля. Недостатками указанного способа являются необходимость устойчивого приема пунктами радиоконтроля сигналов контролируемого ИРИ, что не всегда возможно в условиях сложного рельефа труднодоступной местности и недостаточная точность местоопределения ИРИ, связанная с большим удалением ИРИ от пунктов радиоконтроля.

Известен способ (прототип) местоопределения (см. Пат. РФ 2363011, МПК 00185/12, опубл. 27.07.2009 г.), сущность которого заключается в предварительной доставке в предполагаемый район нахождения ИРИ как минимум 3 кассет. Каждая из кассет содержит навигационный приемник и приемопередатчик. Приемопередатчик включает в себя панорамный приемник и передатчик параметров сигналов. После фиксации в грунте носителя навигационный приемник и приемопередатчик одновременно по сигналу «пуска» или автоматически приводятся в работоспособное состояние. По сигналам навигационно приемника определяют координаты мест фиксации в грунте каждого носителя. Каждый приемопередатчик, имеющий панорамный приемник, осуществляет поиск сигналов ИРИ в заданном частотном диапазоне. При обнаружении сигнала ИРИ осуществляется его оцифровка и передача с помощью передающего устройства приемопередатчика через спутник-ретранслятор на пункт радиоконтроля. На пункте радиоконтроля по поступившим данным осуществляется определение местонахождения ИРИ относительно координат навигационных приемников. Данный способ позволяет обеспечить ЭМД ИРИ и повысить точность местоопределения за счет уменьшения трассы распространения радиоволн от ИРИ к пунктам радиоконтроля. Недостатками данного способа местоопределения ИРИ являются трудности в обеспечении оптимального геометрического фактора, зависящего, в частности, от точности доставки кассет в район формирования системы местоопределения, отсутствие возможности перемещения зафиксированных в грунте кассет в зависимости от изменения положения ИРИ, необходимость обеспечения электромагнитной доступности к спутнику-ретранслятору.

Для достижения технического результата изобретения предлагается в указанном способе-прототипе вместо кассет использовать множество Kспособ определения местоположения источника радиоизлучения, патент № 2526094 4 пространственно-разнесенных малых размеров БЛА-датчиков, каждый из которых содержит блок навигационно-временного обеспечения, ненаправленную антенну, панорамный приемник и приемопередатчик. Базой для размещения аппаратуры датчиков выбраны мультикоптеры, которые имеют ряд преимуществ перед кассетами, указанными в способе-прототипе. Основными преимуществами использования мультикоптеров являются их высокая маневренность и возможность принимать неподвижное состояние в пространстве, за счет чего появляется возможность формировать подобие стационарных наземных пунктов приема разностно-дальномерной системы местоопределения с оптимальным геометрическим фактором, что, в свою очередь, позволяет повысить точность определения координат ИРИ. Еще одним существенным отличием предлагаемого способа от способа-прототипа является то, что обработка координатной информации производится не на наземном пункте радиоконтроля, а на центральном БЛА-датчике, после чего информация о местоположении ИРИ ретранслируется через ЛА-ретранслятор на НПУО, где оператор оценивает точность местоопределения и принимает решение о дальнейшем перестроении множества БЛА-датчиков для формирования в пространстве разностно-дальномерной системы с учетом обеспечения оптимального геометрического фактора, при этом вместо спутника-ретранслятора для ретрансляции команд управления и координатной информации используется пилотируемый или беспилотный летательный аппарат среднего класса, что позволяет обеспечить бесперебойную связь с НПУО.

Заявленный способ поясняется иллюстрацией, представленной на фиг.2. На фиг.2 приняты следующие обозначения: 1 - наземный пункт управления и обработки (НПУО); 2 - пилотируемый или беспилотный летательный аппарат среднего класса (ЛА-ретранслятор), который одновременно является носителем БЛА-датчиков и ретранслятором сигналов между НПУО и центральным пунктом (БЛА-датчиком) системы; 3 - периферийные БЛА-датчики (пункты) РДС; 4 - центральный БЛА-датчик (пункт) РДС; 5 - источник радиоизлучений, местоположение которого определяется; 6 - препятствие, ограничивающее зону приема сигналов ИРИ.

Множество БЛА-датчиков доставляют в предполагаемый район нахождения ИРИ посредством беспилотного или пилотируемого летательного аппарата 2 среднего класса. Совокупность БЛА-датчиков 3, 4, по командам с НПУО 1, размещают в пространстве на границе (вокруг) предполагаемого района функционирования источника радиоизлучений 5 за препятствием, ограничивающим зону приема сигналов ИРИ 6, затем назначают центральный БЛА-датчик 4, формируя, таким образом, разностно-дальномерную систему радиоконтроля. В этом случае вся зона радиоконтроля покрывается сетью БЛА-датчиков. По сигналам блока навигационно-временного обеспечения определяются координаты в пространстве каждого БЛА-датчика и осуществляется высокоточная привязка к собственной системе координат РДС, происходит передача координатной информации о пунктах сформированной РДС на центральный БЛА-датчик. Каждый БЛА-датчик, имеющий панорамный приемник, по команде с центрального БЛА-датчика, осуществляет поиск сигналов ИРИ в заданном частотном диапазоне. При обнаружении сигнала ИРИ осуществляется его оцифровка и передача с помощью передающего устройства приемопередатчика на центральный БЛА-датчик системы радиоконтроля. На центральном БЛА-датчике, по поступившим данным осуществляется определение местоположения ИРИ. При определении местоположения источников радиоизлучений используется корреляционный метод, основанный на измерении временных задержек приема БЛА-датчиками РДС обнаруженных сигналов относительно центрального. После определения местоположения обнаруженного источника радиоизлучения, центральный БЛА-датчик РДС через ЛА-ретранслятор отправляет координаты обнаруженного ИРИ на НПУО, где оператор оценивает точность местоопределения и принимает решение о дальнейшем перестроении множества БЛА-датчиков для формирования в пространстве разностно-дальномерной системы с учетом обеспечения оптимального геометрического фактора.

Предложенный способ позволяет обеспечить прием сигналов от ИРИ, функционирующего в труднодоступной местности, а использование множества Kспособ определения местоположения источника радиоизлучения, патент № 2526094 4 датчиков позволяет сформировать на границе (вокруг) предполагаемого района нахождения ИРИ разностно-дальномерную систему радиоконтроля с оптимальным геометрическим фактором, обеспечивающим высокую точность местоопределения.

Таким образом, повышение точности местоопределения достигается за счет обеспечения оптимального геометрического фактора формируемой разностно-дальномерной системы радиоконтроля, а высокая маневренность БЛА-датчиков системы позволяет по команде оператора НПУО за короткие интервалы времени перестроить ее таким образом, что источник радиоизлучения попадает в рабочую зону местоопределения РДС с минимальной погрешностью местоопределения координат.

Справедливость данного утверждения подтверждается следующей оценкой. Пусть задано местоположение БЛА-датчиков 1, Kспособ определения местоположения источника радиоизлучения, патент № 2526094 4, (фиг.3) многопозиционной разностно-дальномерной системы радиоконтроля. В предлагаемой геометрической конфигурации БЛА-датчиков расстояние от ИРИ r0 до центрального БЛА-датчика (пункта) 2 сопоставимо с расстоянием базы РДС, в результате чего выполняется условие функционирования системы в ближней зоне радиоконтроля способ определения местоположения источника радиоизлучения, патент № 2526094 , в таком случае погрешность определения координат зависит от погрешности измерения расстояний баз разностно-дальномерной системы (см. Кондратьев B.C., Котов А.Ф., Марков Л.Н. Многопозиционные радиотехнические системы - М.: «Радио и связь», 1986. - 264 с.). В предлагаемой геометрической конфигурации рабочей системы и, исходя из условия ее функционирования в ближней зоне, оптимально располагать БЛА-датчики в вершинах квадрата. Тогда вариант разностно-дальномерной системы радиоконтроля будет включать в себя K=4 БЛА-датчиков 1 из всего множества Kспособ определения местоположения источника радиоизлучения, патент № 2526094 4, которые будут располагаться в вершинах квадрата (фиг.2). Поскольку базы датчиков взаимно перпендикулярны (способ определения местоположения источника радиоизлучения, патент № 2526094 =способ определения местоположения источника радиоизлучения, патент № 2526094 1=способ определения местоположения источника радиоизлучения, патент № 2526094 2=способ определения местоположения источника радиоизлучения, патент № 2526094 3=способ определения местоположения источника радиоизлучения, патент № 2526094 4=90°), а их значения равны (d=d1 =d2=d3=d4), то обеспечивается повышение точности местоопределения внутри квадрата (см. Белавин О.В. Основы радионавигации - М.: «Советское радио», 1977. - 320 с.).

Для определения точности местоопределения построим кривые равной точности для выбранной геометрической конфигурации РДС. Используя выражение (см., например, Семенюк С.С., Уткин В.В., Бердинских Л.Н. Геометрический фактор разностно-дальномерной сети датчиков в пространстве. Наукоемкие технологии, 2012, № 8. - С.66-72)

способ определения местоположения источника радиоизлучения, патент № 2526094

где: tr(KS) - след матрицы; способ определения местоположения источника радиоизлучения, патент № 2526094 ковариационная матрица ошибок определения вектора координат ИРИ.

Полученные линии равной точности (в плановых координатах) с использованием выражения (1) отображены на фиг.4, откуда видно, что наибольшая точность местоопределения располагается в центре квадрата данной геометрической конфигурации РДС.

В случае, когда источник радиоизлучения располагается ближе к одной из баз системы радиоконтроля или требуется повышение точности определения его координат, то оператор дает команду на формирование (перестроение) в пространстве из множества БЛА-датчиков конфигурации системы с учетом оптимального геометрического расположения датчиков в пространстве, или назначить для формирования из множества те БЛА-датчики, которые имеют оптимальную геометрическую конфигурацию РДС, которая позволяет определять координаты ИРИ с заданной точностью.

Таким образом, предлагаемый способ местоопределения обладает рядом существенных преимуществ перед прототипом, которые позволяют повысить точность местоопределения ИРИ, функционирующих в труднодоступной местности, а использование пилотируемого или беспилотного летательного аппарата среднего класса (ЛА-ретранслятора) позволяет обеспечить бесперебойную связь с НПУО.

Класс G01S5/12 путем индикации в одной системе координат пеленгов различной формы, например гиперболической, круговой, эллиптической, радиальной

способ спутниковой навигации мобильных объектов железнодорожного транспорта на основе известной траектории движения -  патент 2380721 (27.01.2010)
способ местоопределения источника радиоизлучения -  патент 2363011 (27.07.2009)
способ определения вектора состояния космического аппарата по сигналам космических навигационных систем -  патент 2325667 (27.05.2008)
радионавигационный приемопередатчик -  патент 2285271 (10.10.2006)
способ местоопределения источников радиоизлучений -  патент 2248584 (20.03.2005)
определение местоположения с помощью одного спутника на низкой околоземной орбите -  патент 2241239 (27.11.2004)
способ определения местоположения подвижного объекта -  патент 2189053 (10.09.2002)
способ дистанционного определения координат активных необслуживаемых станций -  патент 2172963 (27.08.2001)
устройство определения высокоточного относительного местоположения движущегося объекта по сигналам спутниковых радионавигационных систем -  патент 2143123 (20.12.1999)
цифровой приемник спутниковой радионавигационной системы -  патент 2140090 (20.10.1999)
Наверх