шариковый катализатор крекинга "адамант" и способ его приготовления

Классы МПК:B01J21/16 глины или прочие минеральные силикаты
B01J21/04 оксид алюминия
B01J29/16 содержащие мышьяк, сурьму, висмут, ванадий, ниобий, тантал, полоний, хром, молибден, вольфрам, марганец, технеций или рений
B01J35/08 сферические формы
B01J37/00 Способы получения катализаторов вообще; способы активирования катализаторов вообще
Автор(ы):, , , , , ,
Патентообладатель(и):Общество с ограниченной ответственностью ООО "Компания "Новые технологии" (RU)
Приоритеты:
подача заявки:
2012-10-26
публикация патента:

Изобретение относится к катализаторам крекинга. Описан шариковый катализатор крекинга, включающий в своем составе 10-35% масс. мелкодисперсного цеолита ReНY, 30-80% масс. каолина и 60-5% масс. оксида алюминия, источником которого являются смесь компонентов термоактивированного оксида алюминия и основного хлорида алюминия в весовом соотношении 1:(0,25-0,95). Описан способ получения указанного катализатора. Технический результат - увеличение каталитической активности катализатора. 2 н.п. ф-лы, 1 табл., 5 пр.

Формула изобретения

1. Шариковый катализатор крекинга, включающий в своем составе 10-35% масс. мелкодисперсного цеолита ReНY, 30-80% масс. каолина и 60-5% масс. оксида алюминия, источником которого являются смесь компонентов термоактивированного оксида алюминия и основного хлорида алюминия в весовом соотношении 1:(0,25-0,95).

2. Способ получения шарикового катализатора крекинга по п.1, включающий стадии приготовления шихты, состоящей из мелкодисперсного цеолита ReНY, каолина и источников оксида алюминия заданного состава, формовки на барабанной таблетирующей машине при влажности шихты 35-45% с последующими стадиями закатки таблеток на горизонтальном тарельчатом окатывателе, низкотемпературной выдержки в атмосфере воздуха, сушки и прокалки шарикового катализатора крекинга при температурах 550-650°C во вращающейся прокалочной печи.

Описание изобретения к патенту

Изобретение относится к области нефтеперерабатывающей и нефтехимической промышленности, а именно к приготовлению катализаторов глубокого каталитического крекинга тяжелых нефтяных фракций для производства олефинов C2-C4 и высокооктанового бензина. Предлагаемый катализатор для глубокого крекинга нефтяных фракций содержит цеолит Y в смешанной ионно-обменной форме и матрицы, состоящей из каолина и оксида алюминия.

Из литературных данных известно, что активным центром катализатора крекинга является цеолит Y, отличающийся решеточным модулем и представленный в различной катион-декатионированной форме, в частности HY, ReHY и ReY. Высокая каталитическая активность катализатора крекинга обусловлена равномерным распределением активного компонента в объеме гранулы катализатора, имеющего оптимальное распределение пор, которое обеспечивает доступность активных центров.

Эффективная работа катализатора определяется не только его каталитической активностью, но и стабильностью эксплуатационных характеристик в процессе крекинга углеводородов. Одним из таких показателей является стойкость гранул катализатора к ударно-истирающим нагрузкам, который во многом определяется матрицей катализатора.

Известен способ получения шарикового катализатора крекинга на основе цеолита типа Y [SU 1786718 A1, SU 1774553 A1]. В указанном способе готовят суспензию цеолита типа Y с гелеобразующими растворами - силикатом натрия и сульфатом алюминия, в который вводят соль цинка, формуют шарики в среде минерального масла, осуществляют ионный обмен смесью растворов нитратов аммония и редкоземельных элементов, сушат и прокаливают. Недостатками указанного способа является использование больших объемов растворов, большое количество сточных вод, конечный продукт подвержен растрескиванию на стадии прокаливания.

Известен способ получения шарикового катализатора крекинга на основе цеолита типа Y [Патент РФ 2002125137 A, патент РФ 2002125138 A, патент РФ 2003106560 A, патент РФ 2229933 C1, патент РФ 2221644 C1, патент РФ 2221645 C1]. В указанном способе катализатор получают смешением водной суспензии цеолита Y в натриевой форме с водной суспензией источников алюминия и кремния с образованием алюмосиликатного цеолитсодержащего гидрозоля, формуют гранулы катализатора в колонне с минеральным маслом; проводят активацию раствором сульфата или нитрата аммония, проводят активацию раствором смеси нитратов аммония и редкоземельных элементов, отмывают катализатор от солей, сушат и прокаливают в атмосфере дымовых газов и водяного пара. Полученный катализатор характеризуется высокими показателями: прочностью на раздавливание и каталитической активностью, пониженной усадкой и малым растрескиванием. Указанные способы получения катализаторов имеют много стадий, в том числе таких длительных и трудоемких, как отмывка от солей, большое количество сточных вод, прокалка в токе водяных паров.

Известен способ получения шариковых цеолитсодержащих катализаторов [Патент РФ 96101645 A, патент РФ 2098179 C1], включающий приготовление формовочной массы путем смешения цеолита с неорганическим связующим, введение воды в формовочную массу, формование гранул с последующим припудриванием, закатыванием, сушкой, отсеиванием и прокаливанием, отличающийся тем, что в качестве связующего используют гидроксид алюминия в количестве 20-40 мас.%. А именно, формование гранул ведут методом экструзии с одновременной резкой, последующим равномерным подвяливанием гранул до влажности не более 90% от исходной влажности формовочной массы и закатыванием гранул с одновременным припудриванием ретуром. Недостатками способа являются сложность подбора режима формовки методом экструзии с одновременной резкой, экструдаты получаются различной длины; сложности с припудриванием на стадии закатывания экструдатов, что отражается на производительности процесса получения шарикового катализатора.

Ближайшим известным решением аналогичной задачи по технической сущности является способ получения шарикового катализатора крекинга [Патент РФ 2229932 C2], включающий получение катализатора смешением цеолита Y в редкоземельно-ультрастабильной катионной форме, глины и связующего с последующими формовкой, сушкой и прокалкой. В качестве связующего используют продукт обработки гидроксида алюминия псевдобемитной структуры азотной кислотой до pH не менее 3,5. Цеолит смешивают с глиной, сушат до достижения влажности цеолита не более 10 мас.% и размалывают до зернения менее 4 мкм более 80 мас.%. В полученную смесь добавляют связующее в массовом соотношении цеолит : глина : связующее (в расчете на Al2O3) = (7-20):(70-83):(8-12) следующим образом: вначале вводят 70-80% общего количества связующего, перемешивают, таблетируют на таблет-машине, после чего вводят остальное количество связующего и выдерживают гранулы 30-60 минут для пропитки внешнего слоя гранул. Пропитанные гранулы окатывают на тарели, сушат и прокаливают. Получают катализатор с насыпным весом более 850 кг/м3, прочностью на раздавливание выше 18 кг/шар, высокой активностью и стабильностью во времени эксплуатации. Указанный способ получения катализатора имеет много стадий: смешение цеолита и глины, сушка, размол, смешение со связующим, формовка и пропитка.

Основной задачей предлагаемого нами решения является разработка безотходной, бессточной и достаточно простой технологии приготовления катализатора крекинга с высокой каталитической активностью и стойкостью к ударно-истирающим нагрузкам.

Поставленная цель достигается предлагаемым способом получения шарикового катализатора крекинга, включающим стадии приготовления шихты, состоящей из цеолита ReНY, каолина и источников оксида алюминия заданного состава, формования на барабанной таблетирующей машине при влажности шихты 35-45% с последующими стадиями закатки таблеток на горизонтальном тарельчатом окатывателе, низкотемпературной выдержки в атмосфере воздуха, сушки и прокалки шарикового катализатора крекинга при температурах 550-650°C во вращающейся прокалочной печи.

Отличительными чертами предлагаемого способа получения катализатора крекинга являются:

- содержание активного компонента 10-35% масс. мелкодисперсного цеолита ReНY и связующего, состоящего из 30-80% масс. каолина и 60-5% масс. источников оксида алюминия.

- цеолит Y используют в смешанной ионно-обменной форме, представляющей собой мелкодисперсный ReНY (содержание Re2O3 1-10%, Na2O 0,01-0,1%, решеточный модуль цеолита 6-10).

- источник оксида алюминия представлен в виде смеси компонентов термоактивированного оксида алюминия и основного хлорида алюминия в весовом соотношении 1:(0,25-0,95).

- формовка на барабанной таблетирующей машине при влажности шихты 35-45% с последующей стадией закатки таблеток на горизонтальном тарельчатом окатывателе.

- прокалка шарикового катализатора крекинга при температурах 550-650°C во вращающейся прокалочной печи.

Оксид алюминия в сочетании с каолином в составе катализатора обеспечивают формирование эффективной вторичной пористой структуры гранул, а также высокие прочностные характеристики гранул на раздавливание.

Использование в составе катализатора смеси компонентов термоактивированного оксида алюминия и основного хлорида алюминия в весовом соотношении 1:(0,25-0,95) приводит к резкому увеличению стойкости гранул катализатора крекинга к ударно-истирающим нагрузкам

Таким образом, применение термоактивированного оксида алюминия и основного хлорида алюминия в весовом соотношении 1:(0,25-0,95) при получении шарикового катализатора в заявляемом способе соответствует критерию "новизна".

Промышленная применимость предлагаемого способа приготовления шарикового катализатора крекинга подтверждается следующими примерами.

Сырье:

1. Мелкодисперсный цеолит ReНY (содержание Re2O3 1-10%, Na2 O 0,01-0,1%, решеточный модуль цеолита 6-10). ППП (потери при прокаливании) = 6,04%

2. Каолин. ППП (потери при прокаливании) = 14,67%

3. Источник оксида алюминия - термоактивированный оксид алюминия. ППП (потери при прокаливании) = 23,15%

4. Источник оксида алюминия - основной хлорид алюминия (содержание сухого остатка в пересчете на Al 2O3 - 19,5-21,0%)

5. Вода химически очищенная (ХОВ).

Оборудование:

1. Z-образный смеситель на 1 м3.

2. Барабанная таблетирующая машина.

3. Горизонтальный тарельчатый окатыватель

4. Ленточная сушильная печь.

5. Вращающаяся прокалочная печь с верхним пределом температур на 800°C

Все расчеты в примерах приводятся с учетом того, что рабочим объемом емкости Z-образного смесителя принято до 80% объема от исходного.

Пример 1

Для приготовления шихты берут 147,2 кг мелкодисперсного цеолита ReНY, 644,2 кг каолина. После засыпки всех компонентов шихта перемешивается в смесителе в течение 0,5-1 ч, добавляется ХОВ до получения пластичной пасты, затем формовка на барабанной таблетирующей машине при достижении влажности шихты 35-45% с последующими стадиями закатки таблеток на горизонтальном тарельчатом окатывателе, низкотемпературной выдержки в атмосфере воздуха, сушки и прокалки шарикового катализатора крекинга при температуре 550-650°C во вращающейся прокалочной печи. Состав шихты по сухому остатку представляет 20,1% мелкодисперсного цеолита ReНY и 79,9% каолина.

Пример 2

Для приготовления шихты берут 102,4 кг мелкодисперсного цеолита ReНУ, 256,1 кг каолина, 136,4 кг термоактивированный оксид алюминия, 300,5 кг основного хлорида алюминия. После засыпки всех компонентов шихта перемешивается в смесителе в течение 0,5-1 ч, добавляется ХОВ до получения пластичной пасты, затем формовка на барабанной таблетирующей машине при достижении влажности шихты 35-45% с последующими стадиями закатки таблеток на горизонтальном тарельчатом окатывателе, низкотемпературной выдержки в атмосфере воздуха, сушки и прокалки шарикового катализатора крекинга при температуре 550-650°C во вращающейся прокалочной печи. Состав шихты по сухому остатку представляет: 20,1% мелкодисперсного цеолита ReНY, 45,6% каолина и 34,3% оксида алюминия, где соотношение термоактивированного оксида алюминия и основного хлорида алюминия 1:0,57.

Пример 3

Для приготовления шихты берут 108,8 кг мелкодисперсного цеолита ReНY, 297,5 кг каолина, 115,6 кг термоактивированного оксида алюминия, 255,4 кг основного хлорида алюминия. После засыпки всех компонентов шихта перемешивается в смесителе в течение 0,5-1 ч, добавляется ХОВ до получения пластичной пасты, затем формовка на барабанной таблетирующей машине при достижении влажности шихты 35-45% с последующими стадиями закатки таблеток на горизонтальном тарельчатом окатывателе, низкотемпературной выдержки в атмосфере воздуха, сушки и прокалки шарикового катализатора крекинга при температуре 550-650°C во вращающейся прокалочной печи. Состав шихты по сухому остатку представляет: 20,6% мелкодисперсного цеолита ReНY, 51,2% каолина и 28,2% оксида алюминия, где соотношение термоактивированного оксида алюминия и основного хлорида алюминия 1:0,57.

Пример 4

Для приготовления шихты берут 110,8 кг мелкодисперсного цеолита ReНY, 242,1 кг каолина, 175,8 кг термоактивированного оксида алюминия, 260,2 кг основного хлорида алюминия. После засыпки всех компонентов шихта перемешивается в смесителе в течение 0,5-1 ч, добавляется ХОВ до получения пластичной пасты, затем формовка на барабанной таблетирующей машине при достижении влажности шихты 35-45% с последующими стадиями закатки таблеток на горизонтальном тарельчатом окатывателе, низкотемпературной выдержки в атмосфере воздуха, сушки и прокалки шарикового катализатора крекинга при температуре 550-650°C во вращающейся прокалочной печи. Состав шихты по сухому остатку представляет: 20,9% мелкодисперсного цеолита ReНY, 41,5% каолина и 37,6% оксида алюминия, где соотношение термоактивированного оксида алюминия и основного хлорида алюминия 1:0,39.

Пример 5

Для приготовления шихты берут 97,9 кг мелкодисперсного цеолита ReНY, 180 кг каолина, 207,2 кг термоактивированного оксида алюминия, 373,3 кг основного хлорида алюминия. После засыпки всех компонентов шихта перемешивается в смесителе в течение 0,5-1 ч, добавляется ХОВ до получения пластичной пасты, затем формовка на барабанной таблетирующей машине при достижении влажности шихты 35-45% с последующими стадиями закатки таблеток на горизонтальном тарельчатом окатывателе, низкотемпературной выдержки в атмосфере воздуха, сушки и прокалки шарикового катализатора крекинга при температуре 550-650°C во вращающейся прокалочной печи. Состав шихты по сухому остатку представляет: 19,2% мелкодисперсного цеолита ReНY, 32% каолина и 48,8% оксида алюминия, где соотношение термоактивированного оксида алюминия и основного хлорида алюминия 1:0,47.

У полученных образцов затем определяли их насыпную плотность, механическую прочность на раздавливание по торцу, износоустойчивость к ударно-истирающим нагрузкам и показатели каталитической активности в крекинге керосиногазойлевой фракции в соответствии ASTM D 3907-03: t 482°C, CTO 3.0, WHSV 16 ч-1.

Таблица 1
НаименованиеПример 1 Пример 2Пример 3 Пример 4Пример 5
Насыпная плотность, г/см30,77 0,850,81 0,910,94
Механическая прочность, кг/мм2 2,745,974,08 4,363,12
Износоустойчивость, с 90063005200 27002100
Каталитическая активность, % 53,063,867,2 61,462,5

Из результатов таблицы № 1 следует, что изменение соотношения в катализаторе каолина и источников алюминия оказывает существенное влияние на прочностные характеристики гранул катализатора, а также на каталитическую активность. Катализатор обладает механической прочностью на раздавливание по торцу 3,12-5,97 кг/мм2, износоустойчивостью к ударно-истирающим нагрузкам 2100-6300 с, насыпной плотностью 0,81-0,94 г/см 3 и каталитической активностью по выходу бензина, мас.% в крекинге керосиногазойлевой фракции 62,5-67,2%.

Анализ представленных материалов позволяет сделать вывод о том, что предлагаемое техническое решение дает возможность получать шариковый катализатор по бессточной и достаточно простой технологии приготовления шарикового катализатора крекинга с высокими показателями по стойкости к ударно-истирающим нагрузкам и каталитической активностью.

Класс B01J21/16 глины или прочие минеральные силикаты

катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
каталитическая добавка для повышения октанового числа бензина каталитического крекинга и способ ее приготовления -  патент 2516847 (20.05.2014)
содержащие вольфрамовые соединения катализаторы и способ дегидратации глицерина -  патент 2487754 (20.07.2013)
способ регенерации катализатора, используемого при дегидратации глицерина -  патент 2484895 (20.06.2013)
микросферический катализатор для крекинга нефтяных фракций и способ его приготовления -  патент 2473385 (27.01.2013)
микросферический бицеолитный катализатор для повышения октанового числа бензина крекинга вакуумного газойля и способ его приготовления -  патент 2473384 (27.01.2013)
микросферический катализатор для снижения содержания серы в бензине крекинга и способ его приготовления -  патент 2472586 (20.01.2013)
способ переработки бензинов термических процессов и катализатор для его осуществления -  патент 2469070 (10.12.2012)
способ приготовления блочных сотовых кордиеритовых катализаторов очистки отработавших газов двигателей внутреннего сгорания -  патент 2442651 (20.02.2012)
катализатор, способ его приготовления и процесс неокислительной конверсии метана -  патент 2438779 (10.01.2012)

Класс B01J21/04 оксид алюминия

способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
способ получения ультранизкосернистых дизельных фракций -  патент 2528986 (20.09.2014)
катализатор получения элементной серы по процессу клауса, способ его приготовления и способ проведения процесса клауса -  патент 2527259 (27.08.2014)
способ конверсии оксидов углерода -  патент 2524951 (10.08.2014)
катализатор на подложке из оксида алюминия, с оболочкой из диоксида кремния -  патент 2520223 (20.06.2014)
катализатор и способ синтеза олефинов из диметилового эфира в его присутствии -  патент 2518091 (10.06.2014)
способ производства метанола, диметилового эфира и низкоуглеродистых олефинов из синтез-газа -  патент 2516702 (20.05.2014)
способ получения наноструктурных каталитических покрытий на керамических носителях для нейтрализации отработавших газов двигателей внутреннего сгорания -  патент 2515727 (20.05.2014)
катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения (варианты) -  патент 2515529 (10.05.2014)
катализатор для избирательного окисления монооксида углерода в смеси с аммиаком и способ его получения -  патент 2515514 (10.05.2014)

Класс B01J29/16 содержащие мышьяк, сурьму, висмут, ванадий, ниобий, тантал, полоний, хром, молибден, вольфрам, марганец, технеций или рений

микросферический катализатор крекинга "октифайн" и способ его приготовления -  патент 2522438 (10.07.2014)
шариковый катализатор для гидроочистки нефтяных фракций и способ его приготовления -  патент 2472583 (20.01.2013)
катализатор, способ его получения (варианты) и способ жидкофазного алкилирования изобутана олефинами c2-c4 в его присутствии -  патент 2457902 (10.08.2012)
катализатор, способ его получения (варианты) и способ жидкофазного алкилирования изобутана олефинами c2-c4 в его присутствии -  патент 2445165 (20.03.2012)
катализатор, способ его получения (варианты) и способ жидкофазного алкилирования изобутана олефинами c2-c4 в его присутствии -  патент 2445164 (20.03.2012)
катализатор уменьшения содержания серы в бензине для процесса каталитического крекинга в жидкой фазе -  патент 2396304 (10.08.2010)
композиция катализатора гидрокрекинга -  патент 2387480 (27.04.2010)
способ получения катализатора гидрокрекинга нефтяного сырья -  патент 2310509 (20.11.2007)
способ и катализатор диспропорционирования и трансалкилирования толуола и тяжелых ароматических соединений -  патент 2217402 (27.11.2003)

Класс B01J35/08 сферические формы

способ применения слоистых сферических катализаторов с высоким коэффициентом доступности -  патент 2517187 (27.05.2014)
каталитическая добавка для окисления оксида углерода в процессе регенерации катализаторов крекинга и способ ее приготовления -  патент 2513106 (20.04.2014)
слоистые сферические катализаторы с высоким коэффициентом доступности -  патент 2501604 (20.12.2013)
смешанные оксидные катализаторы в виде полых тел -  патент 2491122 (27.08.2013)
не подверженный спеканию катализатор гидрирования и дегидрирования и способ его получения -  патент 2480278 (27.04.2013)
катализатор, способ его получения и способ трансалкилирования бензола диэтилбензолами с его использованием -  патент 2478429 (10.04.2013)
катализатор синтеза фишера-тропша, способ его приготовления и применения -  патент 2478006 (27.03.2013)
катализатор синтеза фишера-тропша, его изготовление и применение -  патент 2477654 (20.03.2013)
шариковый катализатор для гидроочистки нефтяных фракций и способ его приготовления -  патент 2472583 (20.01.2013)
катализатор и способ получения винилацетата из уксусной кислоты и ацетилена -  патент 2464089 (20.10.2012)

Класс B01J37/00 Способы получения катализаторов вообще; способы активирования катализаторов вообще

катализатор циклизации нормальных углеводородов и способ его получения (варианты) -  патент 2529680 (27.09.2014)
способ получения тонкодисперсной жидкой формы фталоцианинового катализатора демеркаптанизации нефти и газоконденсата -  патент 2529492 (27.09.2014)
способ получения катализатора для процесса метанирования -  патент 2528988 (20.09.2014)
вольфрамкарбидные катализаторы на мезопористом углеродном носителе, их получение и применения -  патент 2528389 (20.09.2014)
катализатор для переработки тяжелого нефтяного сырья и способ его приготовления -  патент 2527573 (10.09.2014)
катализатор для процесса гидродепарафинизации и способ его получения -  патент 2527283 (27.08.2014)
катализатор получения элементной серы по процессу клауса, способ его приготовления и способ проведения процесса клауса -  патент 2527259 (27.08.2014)
способ получения сольвата хлорида неодима с изопропиловым спиртом для неодимового катализатора полимеризации изопрена -  патент 2526981 (27.08.2014)
способ приготовления катализатора и способ получения пероксида водорода -  патент 2526460 (20.08.2014)
способ карбонилирования с использованием связанных содержащих серебро и/или медь морденитных катализаторов -  патент 2525916 (20.08.2014)
Наверх