электрохимический способ получения элементной серы из сероводорода в органических растворителях

Классы МПК:C01B17/04 из газообразных соединений серы, в том числе из газообразных сульфидов 
C25B1/00 Электролитические способы получения неорганических соединений или неметаллов
Автор(ы):, , , ,
Патентообладатель(и):Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Астраханский государственный технический университет" ФГБОУ ВПО "АГТУ" (RU)
Приоритеты:
подача заявки:
2012-07-03
публикация патента:

Изобретение относится к области органической химии, в частности, к способам получения элементной серы из сероводородсодержащих газов и газоконденсатных смесей, и может быть использовано на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности. Способ получения элементной серы из сероводорода включает проведение электролиза сероводорода на платиновом аноде в органическом растворителе в присутствии фонового электролита при температуре 20-25°С и атмосферном давлении. Предварительно перед проведением электролиза сероводорода в органический растворитель вносят триэтиламин. Технический результат - усовершенствование процесса получения элементной серы, позволяющее значительно снизить значение анодного перенапряжения при проведении электросинтеза серы на основе сероводорода. Конверсия сероводорода в элементную серу - 95-98%. 1 прим.

Изобретение относится к области органической химии, в частности к способам получения элементной серы из сероводородсодержащих газов и газоконденсатных смесей и может быть использовано на предприятиях химической, нефтехимической, газоперерабатывающей и металлургической промышленности.

Известен способ получения элементной серы из сернистого газа, содержащего диоксид серы, который включает восстановление сернистого компонента углеводородами при повышенной температуре и дальнейшую переработку в присутствии катализатора с образованием элементной серы по способу Клауса. При этом перед первой каталитической ступенью переработки восстановленный сернистый газ сначала пропускают через дополнительную каталитическую ступень при температуре 350-600°С, после чего охлаждают до температуры 230-250°С и подвергают каталитической Клаус-переработке. Способ позволяет снизить удельный расход восстановителя, например природного газа, и повысить выход целевого продукта - элементной серы [Патент РФ № 2275325, 2006 г.].

Недостатками данного способа являются: высокая температура и многоэтапность проведения процесса, дорогостоящее оборудование, наличие в сернистом газе углеводородов, выполняющих функцию их восстановителя, применение катализаторов высокой стоимости, что негативно сказывается на эффективности процесса, материальных и энергозатратах на его проведение.

Имеется способ получения элементной серы, который включает газофазное окисление сероводорода кислородом в реакторе на твердых катализаторах, селективное отделение серы из продуктов реакции в серосборнике путем барботирования сквозь слой жидкой серы нагретого воздуха до достижения температуры 127-158°С, последующего отвода серы из зоны «под барботажным слоем». В серосборник заливают до заданного уровня барботажного слоя этиленгликоль - буферную жидкость, а затем - продукты реакции до оседания жидкой серы. Способ позволяет снизить энергозатраты и повысить безопасность процесса [Патент РФ № 2316469, 2008 г.].

Недостатками данного способа являются: многостадийность проведения процесса, повышенная температура, повышенное давление для проведения процесса в газофазных условиях и для реализации стадии барботирования жидкой серы, использование буферной жидкости, применение дорогостоящих катализаторов, что значительно усложняет технологический процесс и увеличивает материальные затраты на его проведение.

Наиболее близким по технической сущности (прототипом) является способ получения элементной серы из сероводорода, включающий одноэлектронное окисление сероводорода до катион-радикала на платиновом аноде в условиях электролиза в органическом растворителе в присутствии фонового электролита при нормальных условиях (комнатная температура и атмосферное давление) [Берберова Н.Т. и др. // Известия ВУЗов. Химия и химическая технология, Иваново: ИГХТУ. - 2003. - Т. 46. - Вып.6. - С.74-78].

Недостатками данного способа являются: высокое значение анодного потенциала (1,6 В), необходимого для окисления сероводорода в условиях электролиза, что приводит к высоким энергозатратам, снижающим эффективность процесса и повышающим стоимость получаемой элементной серы.

Техническая задача - создание энергоемкого способа, позволяющего получать элементную серу из сероводорода в органических растворителях с относительно высоким выходом.

Технический результат - усовершенствование процесса получения элементной серы на основе сероводорода, позволяющего значительно снизить значение анодного перенапряжения при проведении электросинтеза серы на основе сероводорода.

Он достигается тем, что в данном способе, включающем взаимодействие триэтиламина с сероводородом с образованием тиолат-аниона и последующее его одноэлектронное окисление на платиновом аноде в условиях электролиза в органических средах, в присутствии фонового электролита, при температуре 20-25°С и атмосферном давлении получают элементную серу (выход на пропущенный сероводород - 92%) с последующим декантированием исследуемого раствора с целью выделения целевого продукта. Конверсия сероводорода в элементную серу - 95-98%.

Данный способ основывается на способности сероводорода к взаимодействию при температуре 20-25°С с сильным органическим основанием - триэтиламином ((C2H5) 3N), приводящему к образованию тиолата триэтиламмония ([(C 2H5)3NH]SH), с последующим одноэлектронным окислением тиолат-аниона на платиновом аноде в органических средах на фоне перхлората н.-тетрабутиламмония до тиильного радикала при потенциале Епа=0,3 В (в CH3CN). Тиильные радикалы в условиях электролиза при потенциале окисления тиолат-аниона димеризуются с образованием дисульфана (H2S2 ) с последующим наращиванием сульфидной цепи до три- (H2 S3), полисульфанов (HSnH) и элементной серы.

На основании экспериментальных данных, полученных в ходе проведения процесса получения элементной серы из сероводорода в условиях электрохимического окисления в органических средах, можно записать схему вышеуказанного процесса:

электрохимический способ получения элементной серы из сероводорода   в органических растворителях, патент № 2516480

электрохимический способ получения элементной серы из сероводорода   в органических растворителях, патент № 2516480

электрохимический способ получения элементной серы из сероводорода   в органических растворителях, патент № 2516480

Способ осуществляется следующим образом.

Пример 1. Получение элементной серы из сероводорода, содержащегося в нестабильном газоконденсате, в среде органического растворителя (CH3CN).

Способ получения элементной серы из сероводорода включает предварительную осушку сероводорода, выделяемого из сероводородсодержащего газа или газоконденсатной смеси, ввод органического растворителя и фонового электролита в электролизер, погружение электродов, подачу сероводорода с определенной скоростью, установление значения анодного потенциала (0,3 В), введение триэтиламина и проведение электролиза.

Способ реализуется с помощью электролизера и потенциостата (IPC Pro 2000), обработка данных проводится при использовании IBM и специализированного пакета программ. Аналоговая компенсация омических потерь с помощью потенциостата предусмотрена в связи с проведением электрохимических измерений в неводных средах.

В бездиафрагменный электролизер, предназначенный для трехэлектродной системы, с платиновыми рабочим и вспомогательным электродами, площадью поверхности S=700 мм2, заливали 90 мл очищенного и хорошо осушенного CH3CN, добавляли навеску фонового электролита (3,5 г высушенного перхлората н.-тетрабутиламмония) и вводили 10 мл триэтиламина. Электролизер снабжен барботером для ввода сероводорода.

Сероводород, выделенный из газоконденсата в результате стабилизации (удаления сероводорода и ШФЛУ), подавали непрерывно в течение 2,5 ч со скоростью 3 л/ч при интенсивном перемешивании. Растворимость сероводорода в ацетонитриле (0,01 г/мл) оценивали весовым методом по реакции с ацетатом свинца и методом потенциометрического титрования.

Раствор сероводорода в CH3CN выдерживали в течение 1 ч при температуре 20-25°С. Электролиз вели при заданном потенциале 0,3 В относительно электрода сравнения (хлорсеребряный в нас. растворе KCl с водонепроницаемой диафрагмой, необходимой для проведения электролиза в органических растворителях). Потенциал электролиза соответствует значению, превышаемому потенциал окисления тиолат-аниона до тиильного радикала в CH3CN, на 0,2 В. В ходе электролиза контролировали силу тока на цифровом табло потенциостата. После уменьшения тока до 0,2 мА снимали напряжение, сливали раствор и отфильтровали.

Получаемый продукт - элементную серу с выходом 92% (0,86 г) на пропущенный сероводород сушили в вакуум-эксикаторе при комнатной температуре в течение 3 часов. Идентификацию элементной серы проводили методом рентгено-флуоресцентного анализа на атомно-энергодисперсионном спектрометре АСЭ-1 и электрохимическим методом циклической вольтамперометрии на потенциостате IPC-Pro MF.

Для проведения процесса получения элементной серы из сероводорода в присутствии триэтиламина возможно использовать любой органический апротонный растворитель (например, хлористый метилен или диметилформамид) с рабочим анодным диапазоном потенциалов до 1,0 В.

Положительный эффект предлагаемого электрохимического способа заключается в снижении энергозатрат при получении элементной серы по сравнению с прототипом за счет снижения потенциала электролиза на 1,3 В и сокращении времени проведения процесса в 3 раза в связи с предварительной стадией депротонирования сероводорода до тиолат-аниона в присутствии триэтиламина, необходимой для последующего осуществления электросинтеза элементной серы.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Способ получения элементной серы из сероводорода, включающий проведение электролиза сероводорода на платиновом аноде в органическом растворителе, в присутствии фонового электролита, при температуре 20-25°С и атмосферном давлении, отличающийся тем, что предварительно перед проведением электролиза сероводорода в органический растворитель вносят триэтиламин.


Скачать патент РФ Официальная публикация
патента РФ № 2516480

patent-2516480.pdf
Патентный поиск по классам МПК-8:

Класс C01B17/04 из газообразных соединений серы, в том числе из газообразных сульфидов 

Патенты РФ в классе C01B17/04:
катализатор получения элементной серы по процессу клауса, способ его приготовления и способ проведения процесса клауса -  патент 2527259 (27.08.2014)
способ получения элементной серы из отходящего газа, содержащего диоксид серы -  патент 2523204 (20.07.2014)
способ очистки газа от сероводорода -  патент 2520554 (27.06.2014)
способ управления процессом восстановления сернистых дымовых газов -  патент 2516635 (20.05.2014)
способ комплексной подготовки углеводородного газа -  патент 2509597 (20.03.2014)
способ получения серы -  патент 2508247 (27.02.2014)
способ очистки газов от сероводорода -  патент 2505344 (27.01.2014)
электрокаталитический способ получения элементной серы из сероводорода -  патент 2498938 (20.11.2013)
способ получения элементарной серы из высококонцентрированных сероводородсодержащих газов -  патент 2495820 (20.10.2013)
способ получения серы из дымовых газов, содержащих диоксид серы -  патент 2478567 (10.04.2013)

Класс C25B1/00 Электролитические способы получения неорганических соединений или неметаллов

Патенты РФ в классе C25B1/00:
способ получения йодирующего агента -  патент 2528402 (20.09.2014)
способ получения жидкого средства для очистки воды -  патент 2528381 (20.09.2014)
способ получения нановискерных структур оксидных вольфрамовых бронз на угольном материале -  патент 2525543 (20.08.2014)
бортовая электролизная установка космического аппарата -  патент 2525350 (10.08.2014)
способ получения магнетита -  патент 2524609 (27.07.2014)
способ электролиза водных растворов хлористого водорода или хлорида щелочного металла в электролизере и установка для реализации данного способа -  патент 2521971 (10.07.2014)
способы получения водорода из воды и преобразования частоты, устройство для осуществления первого способа (водородная ячейка) -  патент 2521868 (10.07.2014)
способ и устройство для получения водорода из воды -  патент 2520490 (27.06.2014)
способ преобразования солнечной энергии в химическую и аккумулирование ее в водородсодержащих продуктах -  патент 2520475 (27.06.2014)
активация катода -  патент 2518899 (10.06.2014)


Наверх